ʵ

Uutiset

Tekoäly ennustaa luotettavasti, miten eri lääkeyhdistelmät tappavat syöpäsoluja

Suomessa kehitetyn koneoppimismenetelmän avulla syöpäsairauksia voitaisiin hoitaa nykyistä tehokkaammin.
Some medicine capsules and equations
Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Kuvitus: Matti Ahlgren / Aalto-yliopisto

Eri lääkkeiden yhdistäminen on usein tehokkain ja turvallisin tapa hoitaa syöpäpotilaita. Nyt Aalto-yliopiston, Helsingin yliopiston ja Turun yliopiston tutkijat ovat kehittäneet  koneoppimismenetelmän, joka ennustaa tarkasti, miten erilaisten lääkkeiden yhdistelmät tappavat syöpäsoluja.

Pitkälle edenneen syövän hoidossa erilaisten hoitomenetelmien yhdistäminen on yleensä välttämätöntä. Syöpäleikkauksen lisäksi potilasta hoidetaan usein sädehoidolla, lääkehoidolla tai molemmilla.  Eri lääkkeitä myös yhdistetään niin, että yhdistelmässä olisi mukana eri soluihin eri tavoin vaikuttavia lääkeaineita.

Yhdistäminen paitsi parantaa hoidon tehoa myös vähentää usein sen haittoja, jos yksittäisten lääkkeiden annostusta pystytään pienentämään. Toimivien lääkeaineyhdistelmien seulominen kokeellisesti on kuitenkin hidasta ja kallista. Siksi yhdistelmähoidon edut jäävät usein saavuttamatta.

Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Arvostetussa julkaistut tutkimustulokset kertovat, että malli löysi lääkkeiden ja syöpäsolujen väliltä sellaisia yhteyksiä, joita ei havaittu yksinkertaisemmilla malleilla. 

”Koneen oppima malli on itse asiassa koulumatematiikasta tuttu polynomifunktio, mutta erittäin monimutkainen sellainen. Malli antaa erittäin tarkkoja tuloksia. Esimerkiksi niin kutsutun korrelaatiokertoimen arvot olivat kokeissamme yli 0,9. Se viittaa erinomaiseen luotettavuuteen”, Aalto-yliopiston professori Juho Rousu kertoo.

Kokeellisissa mittauksissa korrelaatiokerrointa 0,8-0,9 pidetään luotettavana. Usein se jää kuitenkin niissä sen alle.

Hyötyä myös muiden sairauksien hoidossa

Menetelmä ennustaa tarkasti, miten tietty lääkeaineyhdistelmä tuhoaa syöpäsoluja, vaikka juuri sen yhdistelmän vaikutusta kyseiseen syöpätyyppiin ei olisi aiemmissa laboratorio tutkimuksissa testattu. 

”Tämä auttaa syöpätutkijoita valitsemaan, mitä lääkeaineyhdistelmiä kannattaa valita tuhansien vaihtoehtojen joukosta jatkotutkimuksiin”, sanoo tutkija Tero Aittokallio Suomen molekyylilääketieteen instituutista FIMMistä, joka on osa Helsingin yliopistoa.

Samaa menetelmää voitaisiin hyödyntää myös muiden kuin syöpäsairauksien kohdalla. Tällöin malli täytyisi opettaa uudelleen datalla, joka liittyy kyseiseen sairauteen. Menetelmällä voitaisiin tutkia esimerkiksi sitä, miten eri antibioottiyhdistelmät vaikuttavat bakteeritulehduksiin tai miten tehokkaasti eri lääkeaineyhdistelmät tappavat soluja, joihin SARS-Cov-2-koronavirus on hyökännyt.

Julkaisu:

Heli Julkunen, Anna Cichonska, Prson Gautam, Sandor Szedmak, Jane Douat, Tapio Pahikkala, Tero Aittokallio, and Juho Rousu. Leveraging multiway interactions for systematic prediction of pre-clinical drug combination effects. Nature Communications. DOI: 10.1038/s41467-020-19950-z

äپٴᲹ:

Heli Julkunen
Projektitutkija, Aalto-yliopisto
heli.julkunen@aalto.fi

Juho Rousu
Professori, Aalto-yliopisto
Suomen tekoälykeskus FCAI
puh. 050 415 1702
juho.rousu@aalto.fi

Tero Aittokallio
Ryhmänjohtaja, Suomen molekyylilääketieteen instituutti FIMM
Helsingin yliopisto
tero.aittokallio@helsinki.fi

Linkki tutkimusartikkeliin:

Lue lisää

Finnish Center for Artificial Intelligence

Tekoälyn tutkimuksen ja kehittämisen keskus.

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Jaettu kuva: vasemmalla valkoinen rekka tiellä kasvien kanssa; oikealla digitaalisia linjoja ja osittainen kasvot. Teksti: unite! #UniteSeedFund
Palkinnot ja tunnustukset, ۳ٱ𾱲ٲö Julkaistu:

Merkittävä EU-rahoitus kahdelle Unite! Seed Fund -hankkeelle, joissa Aalto on mukana

Kaksi arvostettua EU-rahoitusta on myönnetty hankkeille, joita on alun perin tuettu Unite! Seed Fund -rahoituksella. Aalto-yliopisto on mukana molemmissa hankkeissa.
arotor adjustable stiffness test setup
۳ٱ𾱲ٲö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Tutkimus ja taide Julkaistu:

TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin

Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.