柠檬导航

News

Are we at the limits of measuring water-repellent surfaces?

As we develop extremely liquid-repellent surfaces, the errors in existing measurement techniques are getting too large.
Water droplet on a surface
A water droplet resting on a highly repellent surface (Image credit Mika Latikka)

How liquids are repelled by a surface 鈥 a property called 鈥渨ettability鈥濃 is important for engineers to develop aircraft that resist ice formation; for fashion designers developing outdoor gear that repels rain and dirt; and every possible field in between. Researchers developing whole new surface materials in the lab also need accurate measurement of wetting properties so they can compare how different surfaces behave. For over two centuries, the standard method for defining how the droplet and the surface interact has been by measuring the 鈥渃ontact angle鈥 of the droplet. The contact angle is the angle between the edge of the droplet and the surface it lies upon. Research at Aalto University is now calling the effectiveness of this method into question, in a perspective article published 15 March in the journal Science.

The problem with the contact angle method 鈥 according to Professor Robin Ras 鈥 is that it depends on both the accuracy of camera used to image the droplet and a subjective decision by the scientist about where in the image the droplet meets the surface. As scientists and engineers develop increasingly water-repellent materials, our ability to measure how effective they are decreases because the errors in the measurement get substantially worse as the ability to repel water increases.

Where the measurement line is chosen alters the outcome of the measurement
How errors arise in the traditional method (image credit: Maja Vuckovac)

Professor Ras鈥檚 team has carefully quantified the errors that arise from contact angle measurements, and his group are developing alternative methods for measuring how water-repellent surfaces interact with droplets. Newer methods which measure the adhesion or friction forces between the surface and the droplets not only have lower errors, but allow quantification in physical terms that is more relevant to the engineers developing new materials.

鈥淲e encourage researchers to rethink the relevance of contact angles in hydrophobic surface characterization and propose force as the next-generation benchmark quantity鈥 says Professor Ras.

By raising the awareness among the wider scientific community that better methods for measuring surface wettability are out there, Professor Ras and his team hope that others will be able to make further discoveries currently unobtainable using traditional measurement techniques.

Link to the full article:

For further details contact:

Professor Robin Ras
robin.ras@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.
Microscopic view of several rod-shaped bacteria with hair-like structures, set against a dark red background.
Press releases, Research & Art Published:

A new way to measure contagion: the gut bacterium behind blood poisoning can spread like influenza

Neither the antibiotic-resistant nor the highly virulent strains are the most transmissible.