柠檬导航

News

Qubits as valves: controlling quantum heat engines

Researchers from Aalto University are designing nano-sized quantum heat engines to explore whether they may be able to outperform classical heat engines in terms of power and efficiency.
Tunable quantum heat valve

In their paper, published in Nature Physics, the group led by Professor Jukka Pekola presents a way to solve a problem in how quantum systems interact and exchange energy with their macroscopic surroundings, and within themselves. The group strives to treat quantum information and thermodynamics on the same footing in their research.

鈥榃e have realised a miniature heat valve in a quantum system composed of an artificial atom, a superconducting qubit鈥攖he basic building block of both quantum computing and quantum heat engines,鈥 explains Professor Pekola.

While in quantum computers the qubit has to be decoupled from the noisy external world to sustain a fragile quantum state, in quantum heat engines, the system needs to be coupled to its dissipative surroundings, to heat baths.

A particularly puzzling problem is the process of thermalisation when connecting external heat sources or 鈥榯hermal baths鈥 to a coherent quantum system or qubit. Ultimately, heat is exchanged between these systems through the emission of photons, one by one.

鈥楿sing a qubit controlled by a magnetic field as a 鈥渧alve鈥, we can either block or release the flow of photons carrying the heat through the qubit between two 鈥渉eat baths鈥 formed of metallic resistors,鈥 explains Dr. Alberto Ronzani, the lead author of the paper.

A quantum heat engine transforms heat into useful work or, in reverse, operates as a refrigerator.

鈥極ur work demonstrates how a heat valve can work in certain cases. We aim to understand, combining experimental and theoretical efforts, how quantum refrigerators and heat engines work, but have yet to come up with a general picture of the cross-over between non-dissipative and fully dissipative systems. That鈥檚 a challenge for the future,鈥 says Pekola.

In addition to Pekola and Ronzani, the team consists of doctoral students Bayan Karimi and Jorden Senior, Dr. Joonas Peltonen and additional collaborators Yu-Cheng Chang and Dr. ChiiDong Chen from the National Taiwan University and the Institute of Physics, Academia Sinica, in Taiwan, Republic of China, with experimental contributions to this work.

Jukka Pekola leads  鈥 Centre of Excellence funded by the Academy of Finland. The experimental research was carried out at the for micro, nano and quantum technologies in Finland.

Research article: A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J.T. Peltonen, C.D. Chen, and J.P. Pekola: 鈥楾unable photonic heat transport in a quantum heat valve鈥. Nature Physics 14:7 (2018). DOI: .

More information:
Jukka Pekola, Academy Professor
jukka.pekola@aalto.fi
tel. +358 50 344 2697

Image: Jorden Senior / Aalto University

  • Updated:
  • Published:
Share
URL copied!

Read more news

Orcid
Research & Art Published:

Aalto University is introducing ORCID鈥檚 Researcher Connect service

Aalto University is introducing ORCID's Researcher Connect service, which facilitates information transfer between researchers' ORCID profiles and the university's research information management system, ACRIS.
Two wooden sculptures with pointed ends facing each other on a white surface.
Research & Art Published:

Nature of Process: Exhibition by the students of the 鈥楶ersonal Exploration鈥 Course

Nature of Process is a multi-material exhibition of 14 Master麓s students of Aalto ARTS
A group of people giving thumbs up in front of screens displaying 'Doc+ Dialogues'. Chairs and wooden walls are in the background.
Research & Art, Studies Published:

Doc+ connects research impact with career direction - join the events!

Doc+ panels have brought together wide audiences in February and continue in March with two events to discuss doctoral careers and their diversity.
Three people having a discussion at a table with laptops. Text: Visiting Professorships at TU Graz, October 1, 2026 - January 31, 2027.
Cooperation, Research & Art, Studies, University Published:

Apply Now: Unite! Visiting Professorships at TU Graz

TU Graz, Austria, invites experienced postdoctoral researchers to apply for two fully funded visiting professorships. The deadline for expressions of interest is 20 February 2026, and the positions will begin on 1 October 2026.