ʵ

Uutiset

Einsteinin ennustama haamuvuorovaikutus todennettu massiivisten kappaleiden välillä

Kvanttilomittuminen on nyt havaittu ensi kertaa makroskooppisissa objekteissa.
Aalto-yliopiston tutkijoiden työssä käytettiin piisirulle valmistettuja noin 15 mikrometrin levyisiä rumpukalvoja, jotka soivat korkealla ultraäänitaajuudella. Mittauksissa kahden rummun värähtelyistä saatiin luotua Einsteinin ennustama erikoinen kollektiivinen kvanttitila. Kuva: Aalto-yliopisto/Petja Hyttinen & Olli Hanhirova, ARKH arkkitehdit Oy.

Nature-lehdessä julkaistussa tutkimuksessa lähes ihmisen hiuksen levyiset rumpukalvot onnistuttiin saamaan haamuvuorovaikutukseen keskenään.

Albert Einstein totesi vuonna 1935, että kvanttimekaniikan lait sallisivat haamuvuorovaikutuksen toisistaan kaukana olevien alkeishiukkasten tai kappaleiden välillä. Myöhemmin lomittumiseksi (’entanglement’) kutsutussa ilmiössä hiukkaset vaikuttavat toisiinsa mielivaltaisten etäisyyksien päästä – arkijärjen ja klassisen fysiikan teorioiden vastaisesti – ilman suoraa vuorovaikutusta.

Lomittuminen on sittemmin kiistattomasti havaittu alkeishiukkasille suoritetuissa mittauksissa. Ilmiö on luonut perustan kvanttiteknologioiden, muun muassa kvanttitietokoneiden kehittämiselle. Niiden odotetaan mullistavan tietojenkäsittelyn ja tietoliikenteen lähivuosikymmeninä.

Erilaiset ympäristön häiriöt, etenkin lämpöliike, tosin rikkovat lomittumisen erittäin herkästi. Kvanttifysiikan tutkimuksessa onkin pitkään ajateltu, ettei haamuvuorovaikutusta voi esiintyä atomeja tai molekyylejä suurempien kappaleiden välillä.

Aalto-yliopiston teknillisen fysiikan laitoksen professori Mika Sillanpään johtama tutkijaryhmä on kuitenkin nyt osoittanut toisin. Tulokset on juuri julkaistu tiedemaailman arvostetuimmassa julkaisussa, brittiläisessä Nature-lehdessä.

Tutkijat onnistuivat laboratoriomittauksissaan saamaan kaksi lähes paljaalla silmällä havaittavaa, liikkuvaa kappaletta lomittuneeseen kvanttitilaan, jossa ne tuntevat toisensa haamuvuorovaikutuksen välityksellä. Kokeissa käytettiin kahta värähtelevää, alumiinista piisirulle valmistettua rumpukalvoa. Rummut ovat makroskooppisia atomien kokoluokkaan verrattuna, leveydeltään ohuen hiuksen paksuisia.

”Menetelmässä värähtelevät kappaleet saadaan lomittuneeseen kvanttitilaan suprajohtavan, mikroaaltotaajuisen antennin avulla. Sähkömagneettiset kentät toimivat alustana, joka imee rumpukalvojen liikkeestä lämpöhäiriöitä ja jättää jäljelle heikot kvanttimekaaniset värähtelyt”, selittää professori Mika Sillanpää.

Ympäristön häiriöiden eliminointi on mittauksissa ensiarvoisen tärkeää, joten ne suoritettiin hyvin matalassa lämpötilassa lähellä absoluuttista nollapistettä −273,15 °C. Rumpukalvot saatiin pysymään mittauksissa lomittuneessa kvanttitilassa huomattavan pitkän ajan, jopa puoli tuntia.  Alkeishiukkasille tehdyissä mittauksissa lomittuminen on taas kestänyt vain sekunnin murto-osia.

"Tällaiset mittaukset ovat todella haastavia mutta äärimmäisen kiehtovia. Seuraavaksi aiomme yrittää mekaanisten kvanttitilojen teleportaatiota. Kvanttiteleportaatiossa kappaleiden ominaisuudet voidaan haamuvuorovaikutuksen avulla siirtää mielivaltaisen kauas. Olemme toki vielä melko kaukana Star Trekistä”, kertoo Aalto-yliopiston tutkijatohtori Caspar Ockeloen-Korppi, artikkelin pääkirjoittaja.

Tutkijat ovat kyenneet nyt siis hallitsemaan lähes arkielämän mittakaavan kokoisten kappaleiden kaikkein hienovaraisimpia fysikaalisia ominaisuuksia. Tulevaisuudessa lomittuneita rumpukalvoja voi käyttää kvanttiteknologiaa hyödyntävissä laitteissa esimerkiksi reitittiminä tai herkkinä antureina. Ne voivat myös edistää perustutkimusta kvanttimekaniikan ja painovoiman huonosti ymmärretystä yhteydestä.

Työhön osallistui tutkijoita Aalto-yliopiston lisäksi University of New South Wales Canberrasta Australiasta, University of Chicagosta Yhdysvalloista sekä Jyväskylän yliopistosta. He kehittivät alkuperäisen teoreettisen idean kokeessa käytetystä menetelmästä.

Mittauksissa käytettiin laitteistoja. Tutkimusta rahoittivat myös Euroopan tutkimusneuvosto ERC, EU:n tutkimuksen H2020 puiteohjelma sekä Suomen Akatemia.

Tutkimusartikkeli: C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. A. Clerk, F. Massel, M. J. Woolley, M. A. Sillanpää: ‘Stabilized entanglement of massive mechanical oscillators’. Nature 556, 7702 (2018). .

äپٴᲹ:

Mika Sillanpää, professori
Aalto-yliopisto, teknillisen fysiikan laitos
mika.sillanpaa@aalto.fi
puh. +358 50 344 7330

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Moderni rakennus, jossa värikäs laatoitettu julkisivu, jossa integroitu aurinkopaneeli. Taivas on kirkas ja vaaleansininen.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa

Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Joukko kerääntynyt moderniin rakennukseen isojen ikkunoiden ja puisten yksityiskohtien kanssa, seuraa puhujaa lavalla.
Tutkimus ja taide, Yliopisto Julkaistu:

Aalto ARTS viestii verkostolleen uudella uutiskirjeellä ja avaa keskustelua LinkedInissä

Taiteiden ja suunnittelun korkeakoulu on käynnistänyt uuden Friends of Aalto ARTS -uutiskirjeen sekä avannut oman LinkedIn-sivun.