ʵ

Uutiset

Koneoppimisen avulla voidaan ennustaa ja optimoida materiaalien muodonmuutosta

Tampereen teknillisen yliopiston ja Aalto-yliopiston tutkijat opettivat koneoppimisalgoritmeja ennustamaan, miten materiaalit venyvät. Tutkimus julkaistiin arvostetussa Nature Communications -lehdessä. Koneoppimisen soveltaminen avaa uusia uria fysiikassa. Mahdollisia sovelluksia löytyy myös uusien, optimaalisten materiaalien kehityksestä.
Machine Learning algorithm prediciting stress v strain

Monet arkipäiväiset makroskooppiset kappaleet venyvät ”tasaisesti”. Tällaista venymisprosessia on fysiikassa tapana kuvata sileällä voima-venymäkäyrällä, joka kertoo, kuinka paljon venyttävää voimaa tarvitaan tietyn venymän saavuttamiseksi. Viimeaikaiset kokeet ovat osoittaneet, että mikrometrien mittakaavassa tilanne on toinen: mikroskaalan kiteiden venymisprosessi koostuu tyypillisesti sarjasta diskreettejä venymäpurskeita, joilla on hyvin leveä kokojakauma. Koska purskeet ovat luonteeltaan satunnaisia, voivat näennäisesti samanlaiset mikroskaalan näytteet venyä hyvin eri tavoin. Niiden lujuusominaisuuksissa on siis suurta vaihtelua, mikä vaikeuttaa esimerkiksi materiaalien kehittämistä. Nyt Nature Communications -lehdessä julkaistussa Machine learning plastic deformation of crystals-artikkelissaan tutkijat ottavat koneoppimisen avuksi ennustaakseen yksittäisten näytteiden venymisprosessin ominaisuuksia.

"Koneoppimisalgoritmeilla onnistuttiin mittaamaan, kuinka ennustettava kiteisten aineiden venymisprosessi on. Tämä olisi ollut käytännössä mahdotonta perinteisin keinoin, mutta koneoppiminen mahdollisti uusien, mielenkiintoisten tulosten löytämisen", kertoo Associate Professor Lasse Laurson TTY:n fysiikan laboratoriosta.

Kiteisten aineiden palautumaton (plastinen) muodonmuutos syntyy, kun kiderakenteen viivamaiset hilavirheet eli dislokaatiot liikkuvat paikasta toiseen. Kiteisestä aineesta koostuvissa kappaleissa, kuten esimerkiksi monissa metalleissa tai jäässä, on lähes aina verkosto tällaisia dislokaatioita, kussakin kappaleessa omanlaisensa.

Tutkijat opettivat koneoppimisalgoritmeille yhteyden kappaleen dislokaatioista koostuvan mikrorakenteen ja näytteen voima-venymäkäyrän välillä. Tutkimuksessa selvisi muun muassa, että voima-venymäkäyrän ennustettavuus riippuu epämonotonisesti näytteen venymästä: Aluksi ennustettavuus huononee venymän kasvaessa, johtuen pitkälti venymäpurskeiden satunnaisesta luonteesta. Yllättäen ennustettavuus kuitenkin paranee venymän edelleen kasvaessa. Ennustettavuuteen liittyy myös kokoefekti: suurempien kiteiden deformaatioprosessin ennustaminen on helpompaa.

"Venymän kasvaessa purskeiden määrä vähenee ja näin ollen ennustettavuuskin paranee. Tämä on lupaavaa yksittäisten näytteiden myötörajojen ennustamisen kannalta, joka on erittäin keskeinen tavoite materiaalifysiikassa", sanoo Henri Salmenjoki, tohtorikoulutettava Aalto-yliopiston teknillisen fysiikan laitokselta. 

"Tutkimuksemme osoittaa, että koneoppimisen avulla voidaan ennustaa hyvinkin monimutkaisia ja epälineaarisia fysikaalisia prosesseja. Mahdollisia sovelluksia löytyy paitsi uusien, optimaalisten materiaalien kehityksestä, myös monien muiden monimutkaisten systeemien dynamiikan ennustamisesta", Laurson kertoo.

Nyt julkaistussa tutkimuksessa oli mukana myös professori Mikko Alava Aalto-yliopistosta. Tutkimukseen saatiin rahoitusta Suomen Akatemialta.

Tutustu tutkimukseen .

äپdz:&Բ;

Associate Professor (tenure track), akatemiatutkija Lasse Laurson, TTY:n fysiikan laboratorio, lasse.laurson@tut.fi
Tohtorikoulutettava Henri Salmenjoki, Aalto-yliopiston teknillisen fysiikan laitos, henri.salmenjoki@aalto.fi

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Henkilö seisoo ulkona syksyllä, yllä harmaa huppari ja vihreä takki. Taustalla puut oransseine lehtineen.
Nimitykset Julkaistu:

Esittelyssä Qi Chen: Luotettava tekoäly tarvitsee algoritmeja, jotka selviävät yllätyksistä

Tekoälyn kehittäjien on keskityttävä sovellusten turvallisuuteen ja oikeudenmukaisuuteen, sillä ne liittyvät suoraan yhteiskuntien luottamukseen ja tasa-arvoon, sanoo tutkija Qi Chen.
Henkilö pukeutuneena vaaleanharmaaseen huppariin seisoo sisätiloissa, taustalla tiiliseinä ja vihreitä kasveja.
Nimitykset, Yliopisto Julkaistu:

Tekoälyn ja ihmisen erimielisyys on tutkijalle jännä arvoitus

Francesco Croce tutkii multimodaalisia perustamalleja, erityisesti niiden hyökkäyksensietokykyä.