ʵ

Uutiset

Kvanttimekaanisista solmuista tuli totta

Aalto-yliopiston ja yhdysvaltalaisen Amherst Collegen tutkijat ovat havainneet maailman ensimmäiset solmut kvanttiaineessa.

Visualisointi tutkijoiden muodostaman kvanttisolmun rakenteesta. Jokainen värillinen nauha edustaa joukkoa lähekkäisiä solmulla olevan kvanttikentän suuntia. Jokainen nauha on kiertynyt itsensä ympäri ja ympäröi muut nauhat kerran. Solmun avaaminen edellyttää nauhojen erottamista, mikä ei ole mahdollista rikkomatta niitä. Kuva: David Hall

Tutkijat muodostivat solmussa olevia yksittäisiä aaltoja eli solmusolitoneja suprajuoksevaa atomikaasua kuvaavassa kvanttimekaanisessa kentässä, joka tunnetaan myös Bosen-Einsteinin kondensaattina. Tulokset on juuri julkaistu Nature Physics -lehdessä.

Toisin kuin solmulla oleva naru, tutkijoiden aikaansaamat kvanttisolmut muodostuivat kenttään, jolla on kussakin paikassa tietty suunta. Solmussa oleva kenttä voidaan kuvata lukematomalla määrällä toisensa läpäiseviä renkaita, joista jokainen vastaa tiettyä kentän suuntaa. Näin syntyvä rakenne on topologisesti stabiili, sillä sitä ei voi purkaa rikkomatta renkaita. Toisin sanoen solmua ei voi avata supranesteessä ilman, että samalla tuhotaan kvanttiaineen tila.

– Tätä koetta varten altistimme rubidium-kondensaatin sopivasti paikassa kääntyvän magneettikentän nopeille muutoksille, minkä seurauksena solmu syntyi alle sekunnin tuhannesosassa. Oivallettuamme oikean solmimistavan ja tehtyämme ensimmäisen kvanttisolmun olemme tulleet solmujen teossa todella taitaviksi. Olemme sittemmin tehneet useita satoja kvanttisolmuja, kertoo professori David Hall Amherst Collegesta.

Tutkijat tekivät solmun tuomalla rakenteen sisään kondensaatin reunoilta. Ensin he alustivat kvanttikenttä osoittamaan yhteen suuntaan, minkä jälkeen he muuttivat ulkoista magneettikenttää äkillisesti muodostaakseen pilven keskelle yksittäisen nollapisteen, jossa magneettikenttä katoaa. Sen jälkeen heidän tarvitsi vain odottaa alle millisekunti, kunnes magneettikenttä teki tehtävänsä ja solmu muodostui.

– Fyysikot ovat esittäneet jo vuosikymmenten ajan teoreettisia ennustuksia siitä, että kvanttikentissä pitäisi voida olla solmuja, mutta kukaan ei ole ennen meitä onnistunut tekemään niitä. Nyt kun olemme todella nähneet näitä kummajaisia, pääsemme viimein tutkimaan niiden erikoisia ominaisuuksia. Erityisen merkittävää tässä on se, että löytömme on yhteydessä useisiin tutkimusaloihin, kuten kosmologiaan, fuusioenergiaan ja kvanttitietokoneisiin, toteaa tutkimusryhmän johtaja Mikko Möttönen Aalto-yliopistosta.

Kokeellisia kuvia supranesteestä solmun solmimisprosessin aikana. Solmimisaika etenee vasemmalta oikealle kuvissa esitetyllä tavalla. Kirkkaus kertoo hiukkastiheyden, joka vastaa kentän ylös- tai alaspäin osoittavaa suuntaa. Oikeanpuolimmaisessa paneelissa näkyvät mustat renkaat tuovat esiin kuvassa 1 näkyvän värikkään toruksen, jossa kentän suunta osoittaa sivulle. Kuva: David Hall.

Uuden tarinan alku

Eri sivilisaatiot ovat käyttäneet ja arvostaneet solmuja tuhansien vuosien ajan. Solmut ovat muun muassa mahdollistaneet tutkimusretket valtamerten yli ja inspiroineet mitä hienoimpia koriste- ja kuviomalleja. Inkat käyttivät quipu-nimistä solmujärjestelmää tietojen merkitsemiseen. Nykyaikana solmuilla on katsottu olevan merkittävä rooli luonnon kvanttimekaanisissa perusteissa, vaikka niitä ei ole aikaisemmin nähty kvanttidynamiikassa.

Arkielämässä solmuja tehdään tavallisesti kaksipäisiin naruihin tai köysiin. Tällainen solmu ei ole kuitenkaan matematiikan määritelmän mukaan topologisesti stabiili, sillä se voidaan avata narua leikkaamatta. Stabiilissa solmussa solmun päät ovat pakotettu yhteen. Stabiilin solmun paikkaa narussa voidaan siirtää mutta solmua ei voida avata ilman saksia.

Matematiikan näkökulmasta nyt aikaansaatu kvanttisolmu muodostaa Hopfin säikeistyksenä tunnetun kuvauksen, jonka Heinz Hopf löysi vuonna 1931. Hopfin säikeistystä tutkitaan fysiikassa ja matematiikassa yhä laajasti. Nyt se on ensimmäistä kertaa havaittu kokeellisesti kvanttikentässä.

– Työmme ei ole päätepiste vaan alku kvanttisolmujen tarinalle luonnossa. Olisi hienoa nähdä vielä monimutkaisempia kvanttisolmuja, kuten solmuja, joiden ydin on solmussa. Lisäksi olisi tärkeää muodostaa kvanttisolmuja olosuhteissa, joissa kvanttiaineen tila olisi luontaisesti stabiili. Tällaisessa järjestelmässä olisi mahdollista tutkia tarkasti itse solmun stabiiliutta, kertoo Mikko Möttönen.

Tutkimusartikkeli “Tying Quantum Knots” 

äپٴᲹ:

Mikko Möttönen, dosentti, professori, tekniikan tohtori
Aalto-yliopisto ja Jyväskylän yliopisto
Teknillisen fysiikan laitos
QCD Labs
Puh. 050 594 0950
etunimi.sukunimi@aalto.fi

Mikko Möttönen toimi työn teoreettisen ja laskennallisen osan johtajana. Teoreettiset ideat ja kokeiden tarkka mallinnus ja analyysi olivat erittäin tärkeitä solmun syntetisoinnin onnistumiselle. Mallinnus toteutettiin :n ja Aalto-yliopiston (Aalto Science-IT project) tietokoneilla.

David S. Hall, professori
Amherst College
Department of Physics
Puh. +1 413 542 2072
dshall@amherst.edu

David Hall toimi työn kokeellisen osan johtajana. Kvanttimekaaniset solmut luotiin prof. Hallin laboratoriossa Amherst Collegessa Yhdysvalloissa.

Rahoittajat

Tämä materiaali perustuu työhön, jota ovat rahoittaneet National Science Foundation, Suomen Akatemian Laskennallinen nanotiede -huippuyksikkö, laskennallisten tieteiden tohtoriohjelma (FICS) ja Magnus Ehrnroothin säätiö. Mitkään tässä materiaalissa esitetyt mielipiteet, löydöt, johtopäätökset ja suositukset eivät välttämättä edusta National Science Foundationin tai muiden rahoittajien näkemyksiä.

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Moderni rakennus, jossa värikäs laatoitettu julkisivu, jossa integroitu aurinkopaneeli. Taivas on kirkas ja vaaleansininen.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa

Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Joukko kerääntynyt moderniin rakennukseen isojen ikkunoiden ja puisten yksityiskohtien kanssa, seuraa puhujaa lavalla.
Tutkimus ja taide, Yliopisto Julkaistu:

Aalto ARTS viestii verkostolleen uudella uutiskirjeellä ja avaa keskustelua LinkedInissä

Taiteiden ja suunnittelun korkeakoulu on käynnistänyt uuden Friends of Aalto ARTS -uutiskirjeen sekä avannut oman LinkedIn-sivun.