ʵ

Uutiset

Läpimurto fotoniikassa: dataa siirtävä valosignaali sai lisävoimaa nanokoon vahvistimesta

Aalto-yliopiston tutkijat onnistuivat parantamaan merkittävästi datan etenemistä mikrosirun sisällä yhdessä Université Paris-Sud-yliopiston tutkijoiden kanssa.
John Rönn Micronova
Tutkimuksessa hyödynnettiin Micronovan huippuluokan puhdastiloja. Kuvassa tohtorikoulutettava John Rönn. Kuva: Antti Matikainen

Datansiirto valolla on energiatehokkaampaa ja nopeampaa kuin sähköllä. Valosignaalin nopea vaimeneminen mikrosirun sisällä on kuitenkin estänyt valon käyttöä informaatiosignaalin lähteenä.

Nyt Aalto-yliopiston tutkijat ovat kehittäneet yhteistyössä ranskalaisen Université Paris-Sud-yliopiston tutkijoiden kanssa nanokoon vahvistimen, jonka avulla mikrosirun sisällä kulkeva valosignaali kulkee alusta loppuun saakka hyvin vahvana. Tuoreessa Nature Communications -tiedelehdessä julkaistussa tutkimuksessa tutkijat osoittivat, että signaalin häviötä voidaan pienentää merkittävästi, kun dataa siirretään mikrosirun sisällä esimerkiksi yhdestä prosessorista toiseen.

”Internetyhteyksissä jo käytössä oleva fotoniikka eli valonsiirto on siirtymässä myös mikropiirijärjestelmien käyttöön. Valo on sähköä energiatehokkaampi ja nopeampi tapa siirtää dataa. Informaation lisääntyminen myös pakottaa suorituskyvyn kasvattamiseen. Elektroniikan keinoin suorituskyvyn kasvattaminen alkaa olla erittäin hankalaa, mistä syystä fotoniikasta haetaan vastauksia”, tohtorikoulutettava John Rönn kertoo.

Apua atomikerroskasvatuksesta

Tutkijat onnistuivat läpimurrossaan käyttämällä suomalaista keksintöä: atomikerroskasvatusmenetelmää. Tutkijoiden mukaan menetelmä on ihanteellinen erilaisten mikropiirien prosessointiin, sillä se on jo tärkeä osa nykyisten mikroprosessoreiden valmistusta.

Atomikerroskasvatusmenetelmää on tähän mennessä käytetty lähinnä elektroniikan sovelluksiin. Nyt julkaistu tutkimus kuitenkin osoittaa, että sovelluskohteita on myös fotoniikassa. Fotoniikan kehittymisessä on tärkeää, että uudet komponentit toimivat myös sähkön kanssa, eli elektroniikassa.

”Pii-alkuaine on elektroniikan keskeinen materiaali, ja siksi se on mukana myös valovahvistimessa yhdessä erbium-alkuaineen kanssa” Rönn kertoo.

”Nykyisiä yhdistelmäpuolijohteita, joita käytetään esimerkiksi LED-teknologiassa, voidaan myös käyttää tehokkaasti valon vahvistamiseen. Suurin osa yhdistelmäpuolijohteista ei kuitenkaan ole yhteensopivia piin kanssa, mikä on ongelma massatuotannon kannalta.”

Tutkimus osoitti, että valosignaalia voidaan todennäköisesti vahvistaa kaikenlaisissa rakenteissa eikä mikrosirun rakenteen tarvitse olla tietynlainen. Tulosten perusteella atomikerroskasvatusmenetelmä osoittautui erittäin lupaavaksi mikrosirussa tapahtuvien prosessien kehittämiseen.

”Kansainvälinen yhteistyömme tuotti läpimurron yhden komponentin eli nanokoon vahvistimen kanssa, ja saavuttamamme vahvistus oli todella merkittävä. Tulevaisuudessa komponentteja tarvitaan kuitenkin lisää, jotta valo voi täysin korvata sähkön datansiirtojärjestelmissä. Ensimmäiset sovellusmahdollisuudet ovat nanolasereissa, sekä datan lähettämisessä että vahvistamisessa”, professori Zhipei Sun sanoo.

Artikkeli julkaistiin äskettäin Nature Communications-lehdessä.
 (nature.com)

äپٴᲹ:

tohtorikoulutettava John Rönn
Aalto-yliopisto, elektroniikan ja nanotekniikan laitos
john.ronn@aalto.fi

professori Zhipei Sun
Aalto-yliopisto, elektroniikan ja nanotekniikan laitos
puh. 050 430 2820
zhipei.sun@aalto.fi

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Henkilö seisoo ulkona syksyllä, yllä harmaa huppari ja vihreä takki. Taustalla puut oransseine lehtineen.
Nimitykset Julkaistu:

Esittelyssä Qi Chen: Luotettava tekoäly tarvitsee algoritmeja, jotka selviävät yllätyksistä

Tekoälyn kehittäjien on keskityttävä sovellusten turvallisuuteen ja oikeudenmukaisuuteen, sillä ne liittyvät suoraan yhteiskuntien luottamukseen ja tasa-arvoon, sanoo tutkija Qi Chen.
Henkilö pukeutuneena vaaleanharmaaseen huppariin seisoo sisätiloissa, taustalla tiiliseinä ja vihreitä kasveja.
Nimitykset, Yliopisto Julkaistu:

Tekoälyn ja ihmisen erimielisyys on tutkijalle jännä arvoitus

Francesco Croce tutkii multimodaalisia perustamalleja, erityisesti niiden hyökkäyksensietokykyä.