ʵ

Uutiset

Otaniemessä kehitetty uusi supermusta materiaali puusta

Tieteen ja teknologian alati kehittyvässä maailmassa on tiettyjä ilmiöitä, jotka kiehtovat jatkuvasti niin tieteentekijöitä, taiteilijoita kuin suurta yleisöäkin. Yksi tällainen ilmiö on supermustat materiaalit. Ne ovat aineita, jotka imevät lähes täydellisesti kaiken niihin osuvan valon eivätkä ne heijasta edes infrapuna- tai ultraviolettisäteilyä. Supermustien materiaalien kehittäminen on tärkeää monille tieteenaloille kuten tähtitieteelle, materiaalitutkimukselle ja kuvantamiselle.
Mustaa puuta

Supermustat ominaisuudet ovat kehittyneet luonnossa moniin eri tarkoituksiin esimerkiksi helpottamaan eläinten maastoon sulautumista, lämmönsäätelyä ja sosiaalista vuorovaikutusta. Ne syntyvät valoa imevien kemiallisten yhdisteiden ja valoa vangitsevien rakenteiden täydellisistä yhdistelmistä. Tutkijat ovat onnistuneet luomaan tällaisia supermustia rakenteita, joilla on ainutlaatuinen kyky imeä valoa, minkä ansiosta ne ovat korvaamattomia eri sovelluksissa. Niiden avulla voidaan muun mussa parantaa  aurinkopaneelien suorituskykyä tai vähentää kohinasignaalia avaruustutkimuksessa käytettävissä teleskoopeissa. Mutta kuten kaikissa tieteellisissä hankkeissa, niissäkin on omat rajoitteensa.

Ennätyksellisen supermusta puu

Nykyiset supermustat materiaalit ovat rakenteita, jotka muodostuvat pienistä perusosista. Niiden tuotantoprosessia kutsutaan bottom-up-synteesiksi. Tällaiset menetelmät ovat yleensä aikaa vieviä, energiaintensiivisiä ja riippuvaisia synteettisistä lähtöaineista. Vaikka edistystä on tapahtunut, useimmat supermustat materiaalit ovat edelleen herkkiä kosketukselle, mikä rajoittaa niiden todellisia sovelluksia. Nämä haasteet huomioonottaen Aalto-yliopiston ja VTT:n tutkijat ryhtyivät suunnittelemaan  täysin biopohjaista supermustaa materiaalia puusta. Tutkimusryhmä on hyödyntänyt puun luonnollisia ominaisuuksia tavoitteenaan kehittää vahva, kemiallisesti vaaraton materiaali, joka kykenisi imemään hämmästyttävät 99,65 prosenttia valosta. Onnistuessaan se rikkoisi kaikkien aikojen mustimman massiivipuumateriaalin ennätyksen.

Aalto-yliopiston erikoistutkija Bruno Mattos selittää, miten puusta saadaan supermusta materiaali: "Tutkimuksessamme muunnamme puun luonnollisen hiilihydraattien muodostaman rakenteen valoa imeväksi grafiitin kaltaiseksi materiaaliksi. Rakenteellisilla muutoksilla  voimme myös kehittää valoa sitovia ominaisuuksia. Supermusta puu syntyy vasta yhdistämällä kemiaa oikeanlaiseen nanorakenteeseen.”

Supermusta tarkoittaa kuitenkin muutakin kuin pelkkää väriä. Se vaatii yhdistelmän valoa imeviä kemiallisia rakenteita ja valoa vangitsevia nanorakenteita. Onnistumisen avain on  siis oikeanlaisen kemian sovittaminen puun mikrorakenteeseen, jota luonto on hienosäätänyt vuosituhansien ajan. Uutta rakennetta ei tarvitse suunnitella tyhjästä vaan voidaan hyödyntää olemassa olevaa ja vain sovittaa se haluttuihin mittasuhteisiin.

Mustaa puuta

Puukuitujen luonnollisten muotojen hyödyntäminen

Tutkimus osoitti, että puun selluloosakuitujen luonnollinen epäsymmetrisyys tehostaa ratkaisevasti valon imeytymistä. Monet perinteiset supermustat materiaalit muodostuvat täydellisistä symmetrisessä järjestyksessä olevista lieriön muotoisista rakenteista. Blackwood materiaalin puukuidut ovat luonnostaan erimuotoisia,  mikä itsessään lisää valon imeytymistä.

“Puuta on hiiletetty ennenkin ja tuloksena on ollut mustaa materiaalia, mutta ei koskaan supermustaa. Tämä johtuu siitä, että hiiltymislämpötila ja ligniinipitoisuus ovat keskeisiä. Kun säädämme niitä, saamme aikaan uuden rakenteen, joka syntyy suoraan puun soluseinästä, terävämpinä muotoina, jotka ovat  mittaluokaltaan mikrometristä nanometriin. Tämä tarkoittaa siis sitä, että valon sironta vähenee, mikä johtaa paljon alhaisempaan kokonaisvalonheijastavuuteen, nyt supermustalla tasolla," kertoo väitöskirjatutkija Bin Zhao Aalto-yliopistosta. 

Itse asiassa valon imeytymistä supermustaan puuhun voi verrata valon läpäisevyyteen luonnonmetsässä. Tavallinen metsä on jo paljon pimeämpi kuin esimerkiksi avoin pelto, mutta entä jos metsän puut olisivat kymmenien metrien sijaan useita kilometrejä korkeita? Tässä tapauksessa muotosuhde eli puiden korkeuden ja niiden välisen tilan leveyden suhde olisi paljon suurempi. Metsä olisi siis moninkertaisesti pimeämpi yksinkertaisesti siksi, että valo ei pääse maahan asti.

Uusia sovelluksia

Tämän innovatiivisen lähestymistavan uutuus - helpompi työstettävyys - avaa uusia mahdollisuuksia sovelluksiin, jotka olivat aiemmin mahdottomia toteuttaa. FinnCERES -lippulaivan tutkimusryhmän tekemä tutkimus ei pelkästään venytä supermustien materiaalien rajoja, vaan luo vankan perustan puupohjaisten optisten ratkaisujen kehitykselle. 

"Ymmärtämällä puun rakenteen ja kemian sekä sen optisen suorituskyvyn välistä monimutkaista suhdetta  saamme arvokasta tietoa kuitupohjaisten materiaalien suunnittelusta erilaisiin sovelluksiin," toteaa erikoistutkija Alexey Khakalo VTT:sta.

YK:n Kestävän kehityksen tavoite 9: Teollisuus, innovaatio ja infrastruktuuri

Blackwood-projektissa kehitettävä biopohjainen supermusta materiaali on innovaatio materiaalitieteen ja insinööritieteen alalla. Se tarjoaa kestävän ja myrkyttömän vaihtoehdon perinteisille supermustille materiaaleille, ja sillä voi olla monenlaisia sovelluksia eri teollisuudenaloilla. Näin ollen se on linjassa YK:n kestävän kehityksen tavoitteen 9 kanssa.

Lue lisää .

Bin Zhao, Aalto-yliopisto, Alexey Khakalo VTT, Bruno Mattos Aalto-yliopisto
Bin Zhao, Aalto-yliopisto, Alexey Khakalo VTT, Bruno Mattos Aalto-yliopisto. Kuva: Aalto-yliopisto
  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Henkilö seisoo ulkona syksyllä, yllä harmaa huppari ja vihreä takki. Taustalla puut oransseine lehtineen.
Nimitykset Julkaistu:

Esittelyssä Qi Chen: Luotettava tekoäly tarvitsee algoritmeja, jotka selviävät yllätyksistä

Tekoälyn kehittäjien on keskityttävä sovellusten turvallisuuteen ja oikeudenmukaisuuteen, sillä ne liittyvät suoraan yhteiskuntien luottamukseen ja tasa-arvoon, sanoo tutkija Qi Chen.
Henkilö pukeutuneena vaaleanharmaaseen huppariin seisoo sisätiloissa, taustalla tiiliseinä ja vihreitä kasveja.
Nimitykset, Yliopisto Julkaistu:

Tekoälyn ja ihmisen erimielisyys on tutkijalle jännä arvoitus

Francesco Croce tutkii multimodaalisia perustamalleja, erityisesti niiden hyökkäyksensietokykyä.
Eric Malmi Otaniemen kampuksella Laura Könösen Glitch-teoksen edessä. Kuva: Matti Ahlgren
Nimitykset Julkaistu:

Räppialgoritmi vei Google DeepMindille tutkimaan kielimalleja – nyt Eric Malmi aloittaa vierailevana professorina Aallossa

Eric Malmi on väitellyt Aalto-yliopistosta vuonna 2018, aiheenaan tekoälymenetelmien kehittäminen historiallisten aineistojen ja sukupuiden linkittämiseen. Google DeepMindilla hän on kehittänyt Gemini-kielimalleja sekä shakkitekoälyä. Aaltoon hänet toi Suomen ELLIS-instituutti.