ʵ

Uutiset

Supertietokone voi osoittaa auringonpilkkujen syntyteorian vääräksi

Tutkimusryhmä olettaa yleisen mallin vastaisesti, että auringonpilkut syntyvätkin lähellä auringon pintaa.
Magneettisia pilkkuja (valkoiset) läheltä Auringon pintaa kolmesta erikokoisesta simulaatiomallista. Suurimman pilkut ovat kooltaan noin 20 Mm = 20000 kilometriä, ja niiden magneettikenttä on noin 3kG = 3000, joka on noin 10000 kertaa suurempi kuin Maan magneettikenttä. Kuva: Petri Käpylä.

Auringonpilkkujen syntymistä tutkivalle SPOTSIM-hankkeelle on myönnetty kilpailtua aikaa Mare Nostrumin supertietokoneella Espanjassa. Saadut resurssit, 20 miljoonaa keskusyksikkötuntia, vastaavat rahaksi muunnettuna yhtä keskimääräistä Suomen Akatemian tutkimushanketta, ja supertietokoneelle myönnetty laskenta-aika vastaa noin 500 vuotta tavanomaisella kannettavalla tietokoneella.

”Simulaatiot ovat todella suuria; yhden simulaation yksi datakuutio on kooltaan noin 700 gigatavua. Yksi simulaatio tuottaa kymmeniä datakuutioita, mutta niitä kaikkia ei voi säilyttää. Pitkäaikaiseen säilytykseen halutaan tutkimusaineistoa noin 15 teratavua”, kuvailee tutkimushanketta tutkija Petri Käpylä.

Kohti suuremman kuvan ymmärtämistä

Auringon mallintaminen on vaikeaa, ja auringonpilkkujen syntymiselle on ollut olemassa kaksi kilpailevaa mallia. Yleinen oletus on ollut, että magneettikentät ovat ohuita putkimaisia rakenteita Auringon konvektiokerroksen pohjalla, 200 000 kilometrin syvyydessä sijaitsevassa ohuessa tachocline-kerroksessa, josta ne sitten purkautuvat pinnalle muodostaen auringonpilkkuja. Tämä malli ei kuitenkaan ota lainkaan huomioon turbulenssia, toisin kuin SPOTSIM-hankkeessa tutkittava malli, jossa auringonpilkkujen oletetaan syntyvän hyvin lähellä auringon pintaa, sen konvektiokerroksessa.

"Meteorologit sanovat Maan ilmakehän matalapaineiden täyttyvän, kun niihin virtaa ilmaa ympäristöstä. Oletuksemme perustuu vastaavaan turbulenttiseen ja magneettiseen paineeseen auringon konvektiokerroksessa, joka muokkautuu suuren mittakaavan magneettikentän vuoksi. Tästä aiheutuneen negatiivisen kokonaisvaikutuksen vuoksi plasma voi romahtaa, minkä ansiosta magneettikentät voimistuvat paikallisesti ja auringonpilkkujen syntyprosessi voi alkaa", lisää Käpylä.

Uusi malli vaikuttaisi koko auringon dynamoteoriaan ja sen magneettikentän synnyn ja kehityksen ymmärtämiseenja olisi yksi askel haastavan, koko aurinkoa koskevan suuremman kuvan ymmärtämisessä. Tähän kokonaiskuvaan kuuluvat myös avaruussää ja -ilmasto.

SPOTSIM – Spot-forming convection simulations-tutkimuksessa ovat mukana Petri Käpylä (Aalto-yliopisto ja Leibniz-Institut fur Astrophysik Potsdam (AIP)), Maarit Käpylä (Aalto-yliopisto ja Max-Planck-Institut for Solar System Research), Nishant Singh ja Jörn Warnecke (Max-Planck-Institut for Solar System Research sekä Axel Brandenburg (NORDITA ja University of Colorado Boulder).

äپٴDz:

Petri Käpylä
Research Fellow
Aalto-yliopisto, Leibniz-Institut fur Astrophysik Potsdam (AIP)
petri.kapyla@aalto.fi
puh. +49 331 7499 525

Maarit Käpylä
Adjunct Professor, Independent Max Planck Research Group Leader
Aalto-yliopisto, Max-Planck-Institut for Solar System Research
kapyla@mps.mpg.de
Puh. +49 551 384 979 40

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Moderni rakennus, jossa värikäs laatoitettu julkisivu, jossa integroitu aurinkopaneeli. Taivas on kirkas ja vaaleansininen.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa

Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Joukko kerääntynyt moderniin rakennukseen isojen ikkunoiden ja puisten yksityiskohtien kanssa, seuraa puhujaa lavalla.
Tutkimus ja taide, Yliopisto Julkaistu:

Aalto ARTS viestii verkostolleen uudella uutiskirjeellä ja avaa keskustelua LinkedInissä

Taiteiden ja suunnittelun korkeakoulu on käynnistänyt uuden Friends of Aalto ARTS -uutiskirjeen sekä avannut oman LinkedIn-sivun.