ʵ

Uutiset

Uusi Bosen–Einsteinin kondensaatti luotu Aalto-yliopistossa

Aalto-yliopiston tutkijat ovat luoneet ensimmäisen valosta ja metallin elektroneista muodostuvan Bosen–Einsteinin kondensaatin. Tulokset on julkaistu Nature Physics -lehdessä.
Säteilevän valon aallonpituus kasvaa, eli energia pienenee, kultananopartikkelihilassa edettäessä. Bosen–Einsteinin kondensaatti muodostuu, kun saavutetaan hilan energiaminimi. Kuva: Aalto-yliopisto/Tommi Hakala ja Antti Paraoanu.

Lähes sata vuotta sitten Albert Einstein ja Satyendra Nath Bose ennustivat, että kvanttimekaniikan lait voivat pakottaa ison määrän hiukkasia käyttäytymään kuin ne olisivat yksi ainoa hiukkanen. Ilmiötä kutsutaan Bosen–Einsteinin kondensaatiksi. Ensimmäinen alkaliatomikaasusta koostuva kondensaatti pystyttiin toteuttamaan vasta vuonna 1995, ja saavutus palkittiin fysiikan Nobelilla vuonna 2001.

Bosen–Einsteinin kondensaatti on havaittu jo monissa eri tapauksissa, esimerkiksi atomeille ja valolle, mutta ilmiön rajoja ei vielä tunneta. Tutkijat yrittävät saada aikaan yhä pienempiä, nopeammin ja korkeammassa lämpötilassa muodostuvia kondensaatteja. Mitä helpommaksi kondensaattien luominen käy, sitä kiehtovammiksi niiden mahdolliset teknologiset sovellukset muuttuvat. Valonlähteistä voisi esimerkiksi tehdä äärimmäisen pieniä, mikä nopeuttaisi informaationkäsittelyä jopa satakertaisesti nykytasoon verrattuna.

Aalto-yliopiston tutkijoiden kokeessa kondensoituvat hiukkaset ovat yhdistelmiä valosta ja säännölliseksi hilaksi järjestetyissä kultananopartikkeleissa liikkuvista elektroneista. Useimmiten Bosen–Einsteinin kondensaatin syntyminen edellyttää lähes absoluuttisen nollapisteen lämpötilaa. Uuden kondensaatin hiukkaset ovat kuitenkin pääosin valoa, joten se voitiin luoda huoneenlämpötilassa.

”Kultananopartikkelihila on helppo tehdä nykyaikaisilla nanovalmistusmenetelmillä. Nanopartikkelien lähellä valo voidaan puristaa erittäin pieneen tilaan, jopa pienempään kuin valon aallonpituus tyhjiössä. Nämä ominaisuudet tekevät uudesta kondensaatistamme lupaavan sekä perustutkimuksen että sovellusten kannalta”, sanoo akatemiaprofessori Päivi Törmä.

Suurin haaste kokeissa oli havaita uusi kondensaatti, sillä se syntyy äärimmäisen nopeasti.

”Teoreettiset laskelmamme antoivat olettaa kondensaatin syntyvän pikosekunneissa”, kertoo jatko-opiskelija Antti Moilanen. ”Miten voi todentaa ilmiön olemassaolon, jos se syntyy ja häviää sekunnin biljoonasosassa?”

Säteilevän valon aallonpituus kasvaa, eli energia pienenee, kultananopartikkelihilassa edettäessä. Bosen–Einsteinin kondensaatti muodostuu, kun saavutetaan hilan energiaminimi. Kuva: Aalto-yliopisto / Tommi Hakala ja Antti Paraoanu.

Matkan voi muuttaa ajaksi

Ratkaiseva idea oli sysätä kondensoituvat hiukkaset liikkeeseen nanopartikkelihilan toisesta päästä.

”Edetessään hiukkaset säteilevät valoa koko hilan pituudelta. Mittaamalla valoa voimme seurata, miten kondensaatio tapahtuu. Hiukkasten kulkema matka vastaa prosessiin kulunutta aikaa”, selittää tutkijatohtori Tommi Hakala.

Kondensaatin säteilemä valo muistuttaa laservaloa.

 ”Voimme muuttaa nanopartikkelien välistä etäisyyttä ja siten hallita sitä, syntyykö hiukkasista Bosen–Einsteinin kondensaatti vai tavallista laservaloa. Ne ovat samankaltaisia ilmiöitä, joiden erottaminen toisistaan on perustutkimuksessa tärkeää. Niillä on myös erilaiset sovellusalueet”, selittää professori Törmä.

Sekä Bosen–Einsteinin kondensaatti että laser tuottavat kirkkaan valonsäteen, mutta valon koherenssi on erilaista. Koherenssia voi siten säätää eri sovellusten tarpeisiin. Uusi kondensaatti pystyy tuottamaan erittäin lyhyitä valopulsseja, jotka voisivat esimerkiksi nopeuttaa informaationkäsittelyä ja kuvantamista. Akatemiaprofessori Törmä on jo saanut Euroopan tutkimusneuvoston Proof of Concept -rahoituksen kondensaatin sovellusten tutkimiseen.Tulokset on julkaistu Nature Physics -lehdessä.

Tutkimusartikkeli: T.K. Hakala, A.J. Moilanen, A.I. Väkeväinen, R. Guo, J.-P. Martikainen, K.S. Daskalakis, H.T. Rekola, A. Julku, P. Törmä. .

Tutkijat käyttivät Aalto-yliopiston Micronovan puhdastilan nanovalmistus- ja elektronimikroskopialaitteita.

äپٴᲹ:

Päivi Törmä, akatemiaprofessori, Aalto yliopisto
paivi.torma@aalto.fi
puh. 050 382 6770

Micronova:

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

arotor adjustable stiffness test setup
۳ٱ𾱲ٲö, Tutkimus ja taide Julkaistu:

Miljoonarahoitus uuden sukupolven koneteknologian kehittämiseen – tavoitteena tuottavuusloikka useilla vientialoilla

BEST-hankkeessa kehitetään uudenlaisia tiiviste-, laakerointi- ja vaimennusteknologioita useiden teollisuudenalojen käyttöön.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Tutkimus ja taide Julkaistu:

TAIMI-hanke rakentaa tasa-arvoista työelämää – kuusivuotinen konsortiohanke etsii ratkaisuja rekrytoinnin ja osaamisen haasteisiin

Tekoäly muuttaa osaamistarpeita, väestö ikääntyy ja työvoimapula syvenee. Samalla kansainvälisten osaajien potentiaali jää Suomessa usein hyödyntämättä. Näihin työelämän haasteisiin vastaa Strategisen tutkimuksen neuvoston rahoittama kuusivuotinen TAIMI-hanke, jota toteuttaa laaja konsortio.
Unite! Seed Fund 2026: Hakemus alkaa 20. tammikuuta. Hakemukset avoinna opiskelijatoimintaan, opetukseen ja tutkimukseen.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed Fund 2026: Hakukierros avautuu 20. tammikuuta 2026

Tutustu ennakkoon Unite! Seed Fund 2026 -hakukierrokseen. Haku sisältää kolme rahoituslinjaa: opiskelijatoiminta, opetus ja oppiminen sekä tutkimus ja tohtorikoulutus.
Suuri rahtialus, joka on lastattu värikkäillä konteilla, purjehtii sinisen meren yli osittain pilvisen taivaan alla.
Tutkimus ja taide Julkaistu:

Tutkimus: Polttomoottori voi saavuttaa päästöttömän palamisen ja kaksinkertaisen hyötysuhteen

Argonia hyödyntävä uusi palamiskonsepti voi poistaa polttomoottoreiden typpioksidipäästöt kokonaan ja nostaa hyötysuhteen kaksinkertaiseksi dieselmoottoreihin verrattuna.