ÄûÃʵ¼º½

Uutiset

Uusi ennätys fotonien havaitsemisessa

Aalto-yliopiston tutkijat ovat rikkoneet maailmanennätyksen neljätoistakertaisesti termisten fotoni-ilmaisimien energian tarkkuudessa.
Taiteellinen kuva osittain suprajohtavasta mikroaaltoilmaisimesta. Kuva: Ella Maru Studio.

Ennätys tehtiin ilmaisimella, joka oli osittain suprajohtava. Löytö voi johtaa äärimmäisen herkkien kameroiden ja kvanttitietokoneiden oheislaitteiden rakentamiseen.

Ensimmäinen kahdesta ennätykseen johtaneesta edistysaskeleesta oli uusi ilmaisimen rakenne, jossa pienenpieniä suprajohtavia alumiinin palasia on kytköksissä kultaiseen nanolankaan. Tämä järjestely takasi sekä tehokkaan fotonien imeytymisen että hyvin herkän ilmaisimen lukumenetelmän. Ilmaisin on kokonaisuudessaan pienempi kuin punasolu.

Mikroaaltoilmaisimesta elektronipiirtomikroskoopilla otettu kuva, jossa metallinen nanolanka on väritetty keltaiseksi ja muut osat ovat suprajohtavaa alumiinia. Fotonit saapuvat ilmaisimeen vasemmalta ja imeytyvät pitkään langan osaan. Tämä johtaa lämpötilan nousuun ja suprajohtavuuden heikkenemiseen langan lyhyissä osissa, jotka toimivat tämän ilmiön vuoksi herkkänä lämpömittarina. Kuva: Joonas Govenius.

- Meille koolla on väliä. Mitä pienempi, sitä parempi. Pienemmillä ilmaisimilla saamme suuremman lukusignaalin ja halvemman hinnan massatuotannossa, sanoo Mikko Möttönen, joka on ennätyksen rikkoneen Kvanttilaskennan ja -laitteiden tutkimusryhmän johtaja.

Uusi ilmaisin toimii sadasosa-asteen päässä absoluuttisesta nollapisteestä. Näin kylmässä lämpöliikkeestä tulevat häiriöt ovat niin heikkoja, että tutkijat onnistuivat havaitsemaan vain yhden zeptojoulen kokoisia energiapaketteja. Näin pienellä energialla voi nostaa punasolun vain yhden nanometrin verran.

Toinen edistysaskel liittyy ilmaisimen signaalin lukemiseen, mihin tutkijat käyttivät niin kutsuttua positiivista takaisinkytkentää. Toisinsanottuna ulkoinen tehonlähde voimisti energiapakettien imeytymisestä johtuvia lämpötilan muutoksia.

Tieteellisestä löydöstä tuotteisiin

Koska mikroaallot kulkevat seinien läpi, niitä käytetään nykyään lähes kaikessa langattomassa viestinnässä, kuten kännyköissä ja digitelevisioissa. Siksi entistä herkemmät mikroaaltoilmaisimet saattavat johtaa valtaviin edistysaskeliin viestintä- ja mittaustekniikassa.

Euroopan tutkimusneuvosto (ERC) on juuri , uuden mikroaaltoilmaisimen kehittämiseksi kohti kaupallisia sovelluksia. Tämä on jo kolmas Möttöselle myönnetty ERC-apuraha.

Viestinnän lisäksi uutta ilmaisinta voitaisiin hyödyntää rakenteilla olevassa suprajohtavassa kvanttitietokoneessa.

- Yksittäisiä mikroaaltofotoneja osataan jo tehdä suprajohtavilla laitteilla. Niiden tehokas havaitseminen on kuitenkin edelleen ratkaisematta. Nyt olemme ottaneet suuren harppauksen kohti ongelman ratkaisua lämpötilamittaukseen perustuvassa lähestymistavassa, kertoo Joonas Govenius, joka pääasiallisesti suoritti tutkimuksen käytännössä.

Uutta fysiikkaa

Mikroaaltoilmaisin voi olla hyödyllinen myös pienten systeemien termodynamiikassa. Se on uusi tutkimusala, jota Möttönen on kolunnut Aalto-yliopiston professorin Jukka Pekolan johdossa.

Nyt Pekola ja hänen tutkimusryhmänsä haluavat mennä kvanttirajalle, mutta tähän he tarvitsevat ilmaisimen, joka suoriutuu yksittäisten energiakvanttien mittauksesta. Toisin sanottuna ilmaisimen pitää havaita tarkasti yksittäisiä mikroaaltofotoneja.

- Kvanttitermodynamiikka voi johtaa teknologian pyrähdykseen, koska se käsittelee yksittäisiä kvantteja tai hiukkasia ja on siksi paljon tarkempi kuin perinteinen termodynamiikka, miettii Möttönen.

- Myös muut ryhmät, Pekolan ryhmä mukaan luettuna, kehittelevät yksittäisten mikroaaltofotonien ilmaisinta. Tämä on tosi hienoa, koska voimme oppia toisiltamme ja näin kehittää vieläkin parempia tuotteita, Möttönen iloitsee.

Taiteellinen näkemys mikroaaltoilmaisimesta työssään. Kuva: Heikka Valja.

Tutkimusartikkeli:

Joonas Govenius, Russell E. Lake, Kuan Yen Tan ja Mikko Möttönen,
"Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions ",
Physical Review Letters 117 (2016).

Linkki vapaasti saatavilla olevaan vastaavaan artikkeliin:

³¢¾±²õä³Ù¾±±ð³Ù´ÇÂá²¹:

Mikko Möttönen, dosentti
Aalto-yliopisto
Teknillisen fysiikan laitos
QCD Labs

email: mikko.mottonen@aalto.fi
puhelin: +358 50 594 0950
Twitter: @mpmotton
blogi:

Joonas Govenius
Aalto-yliopisto
Teknillisen fysiikan laitos
QCD Labs
email: joonas.govenius@aalto.fi
puhelin: +358 50 435 3975

  • ±Êä¾±±¹¾±³Ù±ð³Ù³Ù²â:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Lähikuva tieteellisestä instrumentista, jossa kultaa ja pronssia, johtoja ja merkintöjä laboratoriossa.
Mediatiedotteet Julkaistu:

Tutkijat kytkivät lähes ikiliikkuvan aikakiteen ensimmäistä kertaa ulkoiseen värähtelijään – voi kasvattaa kvanttitietokoneiden laskentatehoa

Aikakide on moninkertaisesti pitkäikäisempi kuin muut kvanttijärjestelmät, joten sitä voitaisiin hyödyntää esimerkiksi kvanttitietokoneiden laskentatehon sekä mittauslaitteistojen tarkkuuden kasvattamiseen.
Henkilö koskettaa suurta kiveä tiilirakennuksen edessä, sinisen taivaan alla.
Kampus, Tutkimus ja taide, Yliopisto Julkaistu:

Glitch-teos haastaa näkemään taiteen eri valossa

Laura Könösen veistos paljastettiin 14.10. Otaniemen kampuksella.
Moderni rakennus, jossa värikäs laatoitettu julkisivu, jossa integroitu aurinkopaneeli. Taivas on kirkas ja vaaleansininen.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa

Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.
Joukko kerääntynyt moderniin rakennukseen isojen ikkunoiden ja puisten yksityiskohtien kanssa, seuraa puhujaa lavalla.
Tutkimus ja taide, Yliopisto Julkaistu:

Aalto ARTS viestii verkostolleen uudella uutiskirjeellä ja avaa keskustelua LinkedInissä

Taiteiden ja suunnittelun korkeakoulu on käynnistänyt uuden Friends of Aalto ARTS -uutiskirjeen sekä avannut oman LinkedIn-sivun.