柠檬导航

News

A new type of photonic time crystal gives light a boost

The researchers created photonic time crystals that operate at microwave frequencies, and they showed that the crystals can amplify electromagnetic waves.
 Time varying interface and light
Time varying interface and light. Photo: Viktar Asadchy

Researchers have developed a way to create photonic time crystals and shown that these bizarre, artificial materials amplify the light that shines on them. These findings could lead to more efficient and robust wireless communications and significantly improved lasers.

Time crystals were first conceived by Nobel laureate Frank Wilczek in 2012. While conventional natural crystals have a structural pattern that repeats in space, in a time crystal, the pattern repeats in time instead. Although some physicists were initially skeptical that time crystals could exist, recent experiments have succeeded in creating them. Last year, researchers at Aalto University鈥檚 Low Temperature Laboratory that could be useful for quantum devices.

Now, another team has made photonic time crystals, which are temporal analogues of conventional optical materials. The researchers created photonic time crystals that operate at microwave frequencies, and they showed that the crystals can amplify electromagnetic waves. This ability has potential applications in various technologies, including wireless communication, integrated circuits, and lasers. 

So far, research on photonic time crystals has focused on bulk materials 鈥 that is, three-dimensional structures. This has proven enormously challenging, and the experiments haven鈥檛 gotten past model systems with no practical applications. Now, the team including researchers from Aalto University, the Karlsruhe Institute of Technology (KIT), and Stanford University tried a new approach: building a two-dimensional photonic time crystal.

鈥榃e found that reducing the dimensionality from a 3D to a 2D structure made the implementation significantly easier, which made it possible to realise photonic time crystals in reality,鈥 says Xuchen Wang, the study鈥檚 lead author, who was a doctoral student at Aalto and is currently at KIT.

The new approach enabled the team to fabricate a photonic time crystal and experimentally verify the theoretical predictions about its behaviour. 鈥榃e demonstrated for the first time that photonic time crystals can amplify incident light with high gain,鈥 says Wang.

鈥業n a photonic time crystal, the photons are arranged in a pattern that repeats over time. This means that the photons in the crystal are synchronized and coherent, which can lead to constructive interference and amplification of the light,鈥 explains Wang. 

Two-dimensional photonic time crystals have a range of potential applications. By amplifying electromagnetic waves, they could make wireless transmitters and receivers more powerful or more efficient. Wang points out that coating surfaces with 2D photonic time crystals could also help with signal decay, which is a significant problem in wireless transmission. Photonic time crystals could also simplify laser designs by removing the need for bulk mirrors that are typically used in laser cavities.

Another application emerges from the finding that 2D photonic time crystals don鈥檛 just amplify electromagnetic waves that hit them from surrounding space but also waves travelling along surfaces. Surface waves are used for communication between electronic components in integrated circuits.

鈥榃hen a surface wave propagates, it suffers from material losses, and the signal strength is reduced. With 2D photonic time crystals integrated into the system, the surface wave can be amplified, and communication efficiency enhanced,鈥 says Professor Viktar Asadchy, who has generated the idea of 2D photonic time crystals.

The research is published by Science Advance on Wednesday 5th April 2023. Paper is found online  

More information:

Xuchen Wang
Postdoc at Karlsruher Institut f眉r Technologie
xuchen.wang@kit.edu 

Viktar Asadchy
Assistant Professor, Aalto University
viktar.asadchy@aalto.fi  
tel +358 50 4205 846

Sergei Tretyakov
Professor, Aalto University 
sergei.tretyakov@aalto.fi  
tel +358 50 3502 562

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura K枚n枚nen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen