柠檬导航

News

A sugar extracted from biowaste can provide a sustainable and more efficient method for sound absorption and thermal insulation

Researchers at Aalto University have discovered a way to convert polysaccharides from biowaste into a material that can outperform glass wool and other commercially used sound absorption materials with similar thickness.
A black-and-white microscopic images of a highly porous material
Image: Fangxin Zou / Aalto University

Researchers at Aalto University have discovered a new way to use biowaste to provide sound absorption and thermal insulation.

An effective use of sound absorption materials is needed to reduce noise pollution, which constitutes a major environmental and health problem. The current sound absorption materials can be harmful for the environment and often create waste problems at the end of their lifetime.

The researchers found that pectin, a polysaccharide that can be extracted from biowastes such as fruit peels, can be converted into a freeze-dried highly porous material. They can outperform commercial sound absorption materials, such as glass wool and other porous materials with similar thickness.

鈥漈he porous material prepared in this work demonstrate the great potential of freeze-casted bio-based sound absorption materials to be employed as an alternative material in industrialization and construction, where environmental-friendly materials are needed. They also display low thermal conductivity and excellent thermal insulation performance鈥, says Professor Jaana Vapaavuori from the School of Chemical Engineering.

The small pores on the walls of the bigger walls constituted a hierarchically porous material. This specific structure could increase the tortuosity (i.e., the path the sound travels inside the material) of the material, which further increases sound absorption, especially at the high frequencies. This type of structure has not been reported before in the context of bio-based acoustic absorbers.

鈥漈he material has a structural hierarchy consisting of pores of different dimensions and scales. This type of structuring allowed optimizing the sound absorption performance of the material 鈥 the sound can penetrate deep into material, and thus, the viscous and thermal losses in the materials are enhanced鈥, says Professor Tapio Lokki from the School of Electrical Engineering.

Collaboration with a local store

The obvious benefit of collecting pectin from biowaste is that the researchers can make use of waste streams that are already being produced. The research team, led by professors Vapaavuori and Lokki are looking for opportunities to utilize locally-produced biowaste for their research.

鈥淣ow the work continues into an exploration of how raw material could be sourced directly from a local biowaste. We have been negotiating with a local K-market for waste exchange and a chance to collect the orange peels from their juice pressing machine鈥, says Vapaavuori.

The research was published in

Research groups involved in the project

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

Department of Chemistry and Materials Science
virtual acoustics research group doing measurements in a concert hall

Virtual Acoustics

Professor Tapio Lokki

Department of Information and Communications Engineering
  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Split image: left shows a white truck on a road with plants; right shows digital lines and a partial face. Text: unite! #UniteSeedFund
Awards and Recognition, Cooperation Published:

Two Unite! Seed Fund projects involving Aalto secure top EU funding

Two prestigious EU grants have been awarded to projects that were initially supported with Unite! Seed Funding. Both projects involve Aalto.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.