A surprising experiment opens the path to new particle manipulation methods
Researchers at Aalto University have discovered a surprising phenomenon that changes how we think about how sound can move particles. Their experiment is based on a famous experiment recognisable from high school science classrooms worldwide 鈥 the Chlandni Plate experiment, where particles move on a vibrating surface. The experiment was first performed in from 1787 by Ernst Chladni, who is now known as the father of acoustics. Chladni鈥檚 experiment showed that when a plate is vibrating at a frequency, heavy particles move towards the regions with less vibration, called nodal lines. This experiment has been extensively repeated during the centuries since, and shaped the common understanding of how heavy particles move on a vibrating plate. But researchers at Aalto University have now shown a case where heavy particles move towards the regions with more vibrations, or antinodes. 鈥淭his is a surprising result, almost a contradiction to common beliefs,鈥 says Professor Quan Zhou.
The researchers installed a silicon plate on a piezoelectric transducer and submerged it into water. They spread sub-mm glass spheres on the plate, and vibrated the plate with signals of different frequencies, creating waves on the plate. The researchers were then surprised to observe that the particles move towards the antinodes, forming what they have dubbed 鈥渋nverse Chladni patterns鈥.
An interesting aspect is that the system can create predictable motion at a wide range of frequencies. 鈥淲e can move particles at almost any frequency, and we do not rely on the resonance of the plate鈥, says Zhou. 鈥淭his gives us a lot of freedom in motion control鈥.
Using the newly discovered phenomenon, the researchers were able to precisely control the motion of single particles and a swarm of particles on the submerged plate. In one example, they moved a particle in a maze on the plate, wrote words consisting of separate letters, and merged, transported and separated a swarm of particles by playing different musical notes.
鈥淢any procedures in pharmaceutical research and microsystem assembly require the ability to move and manipulate small particles easily. Using just a single actuator to do all these different things, we are opening a path to new particle handling techniques鈥, says Zhou. 鈥淎dditionally, the method can inspire the future factory-on-a-chip systems.鈥
Contact:
Professor Quan Zhou
quan.zhou@aalto.fi
Read more news
Research Council of Finland establishes a Center of Excellence in Quantum Materials
The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors
The BEST research project is developing new types of sealing, bearing, and damping technology.
The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges
Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.