柠檬导航

News

AI predicts if storms will cause blackouts many days in advance

A collaboration between Aalto University and Finnish Meteorological Institute improves prediction tools for energy companies
Myrskyennuste

Examples of what damage the model predicted from three major storms Tapani (a), Rauli (b), and Pauliina storms (c). The colored areas show the storm predicted by the model,  and their predicted damage level shown by the colour (red = major damage, yellow = minor damage, green = no damage). The numbers, in turn, describe the actual hazard class. The operating areas of the electricity network operators are shown in blue. Photo: Finnish Meteorological Institute / CC BY 4.0

In Finland, stormy weather can happen at any time of year. This is an issue because Finland is heavily forested, and falling trees can knock out power lines and disable transformers, causing power blackouts for hundreds of thousands of people a year. Researchers at Aalto University and the Finnish Meteorological Institute (FMI) are using artificial intelligence and machine learning to try and predict when these weather-inflicted blackouts happen. Their new method can now predict these storms days in advance, allowing electricity companies to prepare their repair crews before the storm has even happened. 

鈥極ur previous model looked at highly local thunderstorms with short lifespans. We鈥檝e now made a new mode that looks at large low-pressure storms, which uses weather prediction data up to 10 days ahead,鈥 said Roope Tervo, PhD candidate at Aalto University and software architect at FMI.

The model categorises storms into 3 categories : No damage; low damage (1 - 140 damaged transformers); and high damage (over 140 damaged transformers). It can predict the location of the storm to within 15 km, and the time of the storm to within 3 hours. Based on the test data, the model has a recall of approximately 0.6, which means that it has a 60% chance of correctly predicting which category a storm will be in. It also has an accuracy of approximately 0.8, which means that 80% of the storms the model predicts will do damage then go on to cause the predicted damage. 

鈥楾he geospatial and temporal resolution become more accurate as the weather models evolve. In 2024 the weather prediction geospatial and temporal resolution will be 5 kilometres and 1 hour, correspondingly.鈥 says Tervo, 鈥楾he outage prediction accuracy can still be improved a bit. For example adding ground frost data and information about tree leaves would most probably improve the results. The prediction will, however, never be perfect. It is also good to remember that, when employing weather prediction data, errors are coming from both weather prediction and the outage prediction models.鈥

The thunderstorm prediction tool previously developed by the team at Aalto and FMI has been used by the power grid operators J盲rvi-Suomen Energia, Loiste S盲hk枚verkko, and Imatran Seudun S盲hk枚nsiirto. 鈥極ur new prediction is provided to them via the same user interface, and they are experimenting using the tool鈥 says Tervo.

The full research article 鈥淧redicting power outages caused by extratropical storms鈥 is published in the journal and is available to read for free online here:  

Contact:

Roope Tervo
PhD Candidate
Aalto University
Tel +358 29 539 3651
Roope.tervo@fmi.fi

Machine learning helps to predict blackouts caused by storms

A collaboration between computer scientists at Aalto University and the Finnish Meteorological Institute applies machine learning to predict how damaging a storm will be

Read More
Lightning strikes
  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen
A person wearing a light grey hoodie stands indoors with a brick wall and green plants in the background.
Appointments, University Published:

The research puzzle of when humans and AI don鈥檛 see eye to eye

Francesco Croce works on robustness in multi-modal foundation models