ʵ

News

Artificial intelligence helps to identify correct atomic structures

Bayesian inference enhanced structure search facilitates accurate detection of molecular adsorbate configurations.
Illustration showing how camphor adsorbs to a copper surface
The stable structures of camphor on Cu(111) are identified in the minima of the 6D adsorption energy surface, which is modeled as a function of molecular orientation and translations.

Functional materials are commonly employed in emerging technologies, such as green energy solutions and new electronic devices. These materials are typically blends of different organic and inorganic components and have many advantageous properties for novel applications. To achieve their full potential, we need precise knowledge on their atomic structure. State-of-the-art experimental tools, such as atomic force microscopy (AFM), can be used to investigate organic molecular adsorbates on metallic surfaces. However, interpreting the actual structure from microscopy images is often difficult. Computational simulations can help to estimate the most probable structures, but with complex materials, accurate structure search is computationally intractable with conventional methods. Recently, CEST group has developed new tools for automated structure prediction using machine learning algorithms from computer science.

In this most recent work, we demonstrate the accuracy and efficiency of our own artificial intelligence method. With BOSS, we identify the adsorbate configurations of a camphor molecule on a Cu(111) surface. This material has been previously studied with AFM, but inferring the structures from those images was inconclusive. Here, we show that BOSS can successfully identify not only the most probable structure, but also eight stable adsorbate configurations that camphor can have on Cu(111). We used these model structures to better interpret the AFM experiments and concluded that the images likely feature camphor which is chemically bound to the Cu surface via an oxygen atom. Analyzing single molecular adsorbates in this way is only the first step towards studying more complex assemblies of several molecules on surfaces and subsequently the formation of monolayers. The acquired insight on interface structures can help to optimize the functional properties of these materials.

More details can be found in the following publication:

J. Järvi, P. Rinke, and M. Todorović, Detecting Stable Adsorbates of (1S)-camphor on Cu(111) with Bayesian Optimization, Beilstein J. Nanotechnol.  2020, 11, 1577-1589. 

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura Könönen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Mikučioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled “Nanoparticles Integrated Functional Textiles”.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen