ÄûÃʵ¼º½

News

Coating bubbles with protein results in a highly stable contrast agent for medical use

Inspired by the bubbles bacteria create inside their cells, researchers developed a similar system by coating tiny gas vesicles with protein. The resulting bubbles are safe, highly stable, and function as contrast agent in medical applications. They could be used to diagnose, for example, cardiological issues, blood flow, and liver lesions.
Microscopic image of giant gas vesicles.

Bacteria produce gas vesicles, tiny thin-walled sacs filled with air or fluid, to help them float. This phenomenon has captured the attention of scientists who see potential for similar bubble-based designs in fields like medicine. A team of researchers at Aalto University’s Department of Applied Physics, led by Professor Robin Ras, have now used the same idea to create a new kind of contrast agent for use in medical applications such as ultrasound imaging. The research was .

Natural materials and biological inspiration

The researchers created bubbles, referred to as giant gas vesicles, ranging from 10 to 100 micrometers in length, and measured their mechanical properties with a technique called micropipette aspiration. The  bubbles were coated with proteins called hydrophobins, which come from fungi. In addition, the team developed a theory to better understand the intricacies of compressibility and porosity in micro-scale physics.

‘By studying the mechanical properties of gas vesicles and developing our own micropipette technique, we were able to make the bubbles stable enough to withstand pressures like the ones you would find in the human body. The bubbles function as a contrast agent, and potentially could be used to diagnose things like cardiological issues, blood flow, and liver lesions with ultrasound in the future,’ says Doctoral Researcher Hedar Al-Terke.

‘We have significantly extended the theoretical framework of the pipette aspiration technique. It can now be used to fully characterize the mechanical properties, including porosity, of compressible gas-filled systems such as the hydrophobin-coated bubbles used in this study,’ says Research Fellow Grégory Beaune.

The research on giant gas vesicles is part of the team’s focus on researching the medical applications of micro-scale physics.

More information:

OtaNano

OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

Read more
Picture of OtaNano lab equipment.
  • Updated:
  • Published:
Share
URL copied!

Read more news

arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.