柠檬导航

News

Does wireless charging work through the human body?

What if pacemakers could be charged without changing batteries?
Illustration of a heart connected to a pacemaker. The pacemaker's battery is low, and it is being charged wirelessly.
Illustration: Aalto University/Kira Vesikko.

In the future, medical devices such as pacemakers and retinal prostheses could be charged wirelessly. Researchers at Aalto University have published a study in which they investigated how human tissue affects wireless charging. The study is a continuation of the group's previous research, which investigated wireless charging from a distance.

Visiting researcher Nam Ha Van from the Department of Electrical Engineering and Automation says that in their latest study, they found that human tissue interface dramatically affects the optimal frequency for wireless power transfer. The research publication has been recognized as one of the featured articles in the . 

鈥橭ur research revealed that the location of the transmitting antenna in the human body dramatically affects the optimal frequency for wireless power transfer. When the device is inside biological tissue, the optimal frequency for maximum power transfer efficiency lies in the tens of megahertz (MHz). When the device is outside the human body, the optimal frequency shifts significantly to the gigahertz (GHz) range,鈥 Ha Van explains. 

The study also demonstrated that the optimal frequency range for wireless power transfer through biological tissue is quite broad, which provides flexibility in system design. The research results provide valuable information for engineers designing medical devices and implants, and represent a significant step toward the development of next-generation biomedical implants and devices.

鈥業n the future, pacemakers may no longer require invasive battery replacements. Similarly, small, swallowable cameras that transmit images from inside the body could be charged wirelessly,鈥 says Ha Van.

Next, the research group plans to apply the study to realistic human anatomical tissue for practical applications such as capsule endoscopy.

Link to the publication:

More information
Nam Ha Van 
nam.havan@aalto.fi
+358505606892

Two small loop antennas can transfer power between each other from 18 centimeters apart.

Going the distance for better wireless charging

Accounting for radiation loss is the key to efficient wireless power transfer over long distances.

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura K枚n枚nen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
A modern building with a colourful tiled facade with solar panels. The sky is clear and light blue.
Press releases, Research & Art Published:

Carbon-based radicals at the frontier of solar cell technology

Could a single unpaired electron change the future of solar energy?
A crowd gathered in a modern building with large windows and wooden accents, watching a speaker on stage.
Research & Art, University Published:

Connecting the creative community 鈥 Aalto ARTS launches newsletter and LinkedIn page

The School of Arts, Design and Architecture has launched a new Friends of Aalto ARTS newsletter and opened its own LinkedIn page.