柠檬导航

News

Exploring the nanoscale world

Are you curious about what happens in Micronova, the leading micro and nanotechnology research center of Finland? This fall we followed students getting hands on experience in the most common methods used in micro and nanotechnology on the Micronova Laboratory course.
Aalto University / students using a microscope in the Micronova cleanroom / photo: Linda Koskinen
The Micronova Laboratory course consists of five guided laboratory sessions. Photo: Linda Koskinen

Monday 14.10.2019

How does a solar cell work and what are the problems you need to take care of in order to get a solar cell work efficiently? This was the topic of the very first lab session of the Micronova Laboratory course. The students studied a wafer and a finished cell and were given the task to figure out what had caused the differences between the two. Hints for this puzzle were given on a cleanroom tour on which methods and equipment used in the process of making solar cells were presented.

Aalto University / Students watching a solar cell in the Micronova cleanroom / photo: Linda Koskinen
The topic of the first laboratory session was solar cells.
Aalto University / A solar cell / photo: Linda Koskinen
A finished solar cell.
Aalto University / wafers in the Micronova cleanroom / photo: Linda Koskinen
The students got a cleanroom tour on which methods and equipment used in the process of making solar cells were presented.

Monday 21.10.2019

鈥淣ow that's cool!" On the second lab session students were given an introduction to the scanning electron microscope. They got hands-on practice with the tool by imaging a sample of compound semiconductor nanowires. These crystalline structures typically have the length of some tens of micrometers 鈥 that's one millionth of a metre 鈥 so they are tiny! Due to their useful optical, electrical, and mechanical properties they have a vast range of applications in several fields including photovoltaics, optoelectronics, photonics, and electronics.

Aalto University / scanning electron microscope in the Micronova cleanroom / photo: Linda Koskinen
The students were given an introduction to the scanning electron microscope.
Aalto University / students using a scanning electron microscope / photo: Linda Koskinen
The reason behind the overalls is this: the technology developed in the Micronova cleanroom is so minuscule that even a single dust particle can break it 鈥 not to mention a single hair!

Friday 8.11.2019

The third lab session was about thermal conductivity. By engineering the thermal properties in nanomaterials used in modern micro- and nanoelectronics, it鈥檚 possible to achieve big improvements in power consumption and energy efficiency in, for example, mobile phones. The students familiarised themselves with the effects of nanostructuring on material thermal properties and got to use an optical pump-probe thermoreflectance setup.

Aalto University / Micronova Laboratory course session / photo: Linda Koskinen
The third lab session was about thermal conductivity.
Aalto University / an optical pump-probe thermoreflectance setup / photo: Linda Koskinen
The students got a chance to use an optical pump-probe thermoreflectance setup.

Thursday 21.11.2019

Photonics 鈥 the science of light 鈥 was the topic of the fourth lab session. The students got to try a method called 鈥榙ry-transfer鈥: they obtained atomically thin flakes of a two-dimensional material called molybdenum disulfide and transferred a flake onto a silicon chip to make devices like transistors out of it. 2D layered materials have unique mechanical and optoelectronic properties that can be combined in a single device such as flexible displays.

Aalto University / students learning about dry-transfer / photo: Linda Koskinen
The students got to try a method called 鈥榙ry-transfer鈥.
Aalto University / A Micronova laboratory course session / photo: Linda Koskinen
A thin flake of molybdenum disulfide was transferred onto a silicon chip.

Thursday 12.12.2019

A human hair is about 50 000 nanometers thick. But how can you determine the thickness of a 10鈥1000 nanometer thin film? On the last lab session students learned about X-ray reflectometry 鈥 an analytical technique for investigating thin-layered structures, surfaces and interfaces using the effect of total external reflection of X-rays. First, a hafnium oxide coating was grown on a silicon substrate thin film using atomic layer deposition. As the density difference of the thin film and the substrate causes interference in the low angle X-ray reflection, the students were able to determine the film鈥檚 thickness, density and roughness.

Aalto University / Students explaining X-ray reflectometry using pens / photo: Linda Koskinen
The students used pens to explain X-ray reflectometry.
Aalto University / A student on the Micronova Laboratory Course / photo: Linda Koskinen
Thin film鈥檚 thickness was determined using X-ray reflectometry.

Got interested?

The Micronova Laboratory course is part of the Master's Programme in Electronics and Nanotechnology.

Aalto electronics-ICT anechoic chamber for 2-60 GHz and two near-field scanners

Electronics and Nanotechnology, Master of Science (Technology)

By developing modern hardware technology, electronics and nanotechnology experts play a key role in shaping the future.

Study options
  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen
A person wearing a light grey hoodie stands indoors with a brick wall and green plants in the background.
Appointments, University Published:

The research puzzle of when humans and AI don鈥檛 see eye to eye

Francesco Croce works on robustness in multi-modal foundation models