ÄûÃʵ¼º½

News

Faster method to read quantum memory

Scientists at Aalto University and VTT have developed a faster way to read information out of qubits, the basic building blocks of a quantum computer
JI
Artistic impression of qubit (blue chip) readout using the quantum states of a resonator (blue and red jets). Figure credit: Heikka Valja.

The potential computing revolution that quantum computers promise is based on their weird property called superposition. Namely, qubits can take both logical states 0 and 1 simultaneously, and any value in between. By mastering superpositions of the whole quantum memory, quantum computers can quickly solve problems that would require too much computing time from regular computers working with simply 0s and 1s.

However, qubits are sensitive, and currently hold quantum information for less than a millisecond at a time, even when kept frozen at temperatures colder than the dark side of the moon. To extract any useful information, the method that reads information from qubits must take the least amount of time as possible, allowing as few errors as possible.

Joni Ikonen, a PhD student at Aalto University, has developed a new method published in that helps do just that. Until now, the method used to read information from a qubit was to apply a short microwave pulse to the superconducting circuit containing the qubit and then measure the reflected microwave. After 300 nanoseconds, the state of the qubit can be deduced from the behavior of the reflected signal.

We were able to complete the readout in 300 nanoseconds in our first experiments, but we think that going below 100 nanoseconds is just around the corner,’ says Joni Ikonen.

By improving the speed and accuracy of the information retrieved from qubits, scientists may be able to move closer to realising the promise of useful quantum computing.

‘This is an amazing result in getting the slippery qubits in order. I hope that it will help the community in the future to reach quantum supremacy and error correction, the path to a quantum computer of practical value,’ says Dr. Möttönen, who co-supervised the work with Dr. Jan Goetz

The QCD research team is part of the national centre of excellence – , funded by the Academy of Finland. The experimental research was carried out at the national OtaNano research infrastructure for micro, nano, and quatum technologies.

The full article,  is published today in Physical Review Letters DOI:

For more information, please contact:

Joni Ikonen
Quantum Computing and Devices Group, PhD student
Aalto University
joni.2.ikonen@aalto.fi
Mobile: +358400539317
Languages: English, Finnish

Dr Mikko Möttönen
Quantum Computing and Devices Group, Group Leader
Aalto University
Mobile:
mikko.mottonen@aalto.fi
Languages: English, Finnish

Dr Jan Goetz
Quantum Computing and Devices Group, Research Fellow
Aalto University 
jan.goetz@aalto.fi
Mobile: +358503003445
Languages: German, English

  • Updated:
  • Published:
Share
URL copied!

Read more news

Orcid
Research & Art Published:

Aalto University is introducing ORCID’s Researcher Connect service

Aalto University is introducing ORCID's Researcher Connect service, which facilitates information transfer between researchers' ORCID profiles and the university's research information management system, ACRIS.
Two wooden sculptures with pointed ends facing each other on a white surface.
Research & Art Published:

Nature of Process: Exhibition by the students of the ‘Personal Exploration’ Course

Nature of Process is a multi-material exhibition of 14 Master´s students of Aalto ARTS
A group of people giving thumbs up in front of screens displaying 'Doc+ Dialogues'. Chairs and wooden walls are in the background.
Research & Art, Studies Published:

Doc+ connects research impact with career direction - join the events!

Doc+ panels have brought together wide audiences in February and continue in March with two events to discuss doctoral careers and their diversity.
Three people having a discussion at a table with laptops. Text: Visiting Professorships at TU Graz, October 1, 2026 - January 31, 2027.
Cooperation, Research & Art, Studies, University Published:

Apply Now: Unite! Visiting Professorships at TU Graz

TU Graz, Austria, invites experienced postdoctoral researchers to apply for two fully funded visiting professorships. The deadline for expressions of interest is 20 February 2026, and the positions will begin on 1 October 2026.