From Light to Motion: Shaping surfaces with light

⤓
Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity.
The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications.
This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications.
The findings were published in (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).
The news article was prepared by Bach Nguyen (MMD / Aalto University).
Related content:
Multifunctional Materials Design
Group led by Professor Jaana Vapaavuori

SUPER-WEAR project
Super-stretchable functionalized materials and fibers for third generation wearable technology

ModelCom project
Autonomously adapting and communicating modular textiles

Read more news

Time crystals could power future quantum computers
A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
Glitch artwork challenges to see art in a different light
Laura Könönen's sculpture was unveiled on 14 October at the Otaniemi campus.
Nanoparticles in Functional Textiles
Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled “Nanoparticles Integrated Functional Textiles”.