ʵ

News

From Light to Motion: Shaping surfaces with light

A quantitative study that leads to a more precise control of the photoactive surface
Schematic of azopolymer/PDMS double layer. Image by Yujiao Dong, Aalto University
Schematic of azopolymer/PDMS double layer. Image: Yujiao Dong / Aalto University

Researchers from the Multifunctional Materials Design group at Aalto University explored the use of photoactive materials to control surface topographies, specifically in generating photo-responsive wrinkle patterns. Azobenzene and its derivatives are employed to trigger photoisomerization reactions upon illumination, resulting in the conversion of electromagnetic energy into mechanical energy. In fact, supramolecular design is utilized to build polymer-azo complexes, allowing for easy tuning of the rate of pattern evolution at constant illumination intensity. 

The study characterizes dynamic photoinduced wrinkle erasure enabled by photomechanical changes in supramolecular polymer-azo complexes via confocal microscopy. Furthermore, a MATLAB algorithm was developed to thoroughly analyze the video that captures the wrinkle erasure process. As a result, a combination of confocal microscopy and the mentioned MATLAB analysis enables a quantitative comparison of wrinkling erasure efficiency of different supramolecular materials and provides a facile way to optimize the system for specific applications. 

This work provides insight into the conversion of molecular-level motion into larger scales and broadens other opportunities for tissue engineering and biological applications. 

The findings were published in (Yujiao Dong, Dr. Pedro E. S. Silva, Prof. Dr. Jaakko V. I. Timonen, Prof. Dr. Jaana Vapaavuori).

The news article was prepared by Bach Nguyen (MMD / Aalto University).

Pedro Silva

Postdoctoral Researcher
Jaakko Timonen

Jaakko Timonen

Professori (Associate Professor)
Teknillisen fysiikan laitos

Related content:

Multifunctional Materials Design

Group led by Professor Jaana Vapaavuori

MMD webpage main image. GIF image by Aalto University, Giulnara Launonen

SUPER-WEAR project

Super-stretchable functionalized materials and fibers for third generation wearable technology

SUPER-WEAR webpage, main image. Photo by Aalto University, Maija Vaara, Mithila Mohan

ModelCom project

Autonomously adapting and communicating modular textiles

ModelCom webpage, main image, nylon yarn helix. Photo by Aalto University, Maija Vaara
  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura Könönen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Mikučioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled “Nanoparticles Integrated Functional Textiles”.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen