柠檬导航

News

Graphene nanoribbons get metallic

Researchers at Aalto University have succeeded in experimentally realizing metallic graphene nanoribbons that are only 5 carbon atoms wide.
Schematic of the tip of a scanning tunneling microscope on a graphene nanoribbon. Picture: Peter Liljeroth's team.

The results suggest that these extremely narrow and single-atom-thick ribbons could be used as metallic interconnects in future microprocessors. In their article published in Nature Communications, the research team demonstrated fabrication of the graphene nanoribbons (GNR) and measured their electronic structure.

Graphene nanoribbons have been suggested as ideal wires for use in future nanoelectronics: when the size of the wire is reduced to the atomic scale, graphene is expected to outperform copper in terms of conductance and resistance to electromigration, which is the typical breakdown mechanism in thin metallic wires. However, all demonstrated graphene nanoribbons have been semiconducting, which hampers their use as interconnects. Headed by Prof. Peter Liljeroth, researchers from the Atomic Scale Physics and Surface Science groups have now shown experimentally that certain atomically precise graphene nanoribbon widths are nearly metallic, in accordance with earlier predictions based on theoretical calculations.

The team used state-of-the-art scanning tunneling microscopy (STM) that allows them to probe the material鈥檚 structure and properties with atomic resolution.

鈥 With this technique, we measured the properties of individual ribbons and showed that ribbons longer than 5 nanometers exhibit metallic behaviour, says Dr Amina Kimouche, the lead author of the study.

The nanoribbon fabrication is based on a chemical reaction on a surface.

鈥 The cool thing about the fabrication procedure is that the precursor molecule exactly determines the width of the ribbon. If you want one-carbon-atom-wide ribbons, you simply have to pick a different molecule, explains Dr Pekka Joensuu, who oversaw the synthesis of the precursor molecules for the ribbons.

The experimental findings were complemented by theoretical calculations by the Quantum Many-Body Physics group headed by Dr Ari Harju. The theory predicts that when the width of the ribbons is increased atom-by-atom, every third width should be (nearly) metallic with a very small band gap.

鈥 According to quantum mechanics, normally when you make your system smaller, it increases the band gap. Graphene can work differently due to its extraordinary electronic properties, says Harju鈥檚 doctoral student Mikko Ervasti, who performed the calculations.

These results pave the way for using graphene in future electronic devices, where these ultra-narrow ribbons could replace copper as the interconnect material. Future studies will focus on all-graphene devices combining both metallic and semiconducting graphene nanostructures.

鈥 While we are far from real applications, it is an extremely exciting concept to build useful devices from these tiny structures and to achieve graphene circuits with controlled junctions between GNRs, says Liljeroth.

The research 鈥溾 was published in Nature Communications Science publication.

The study was performed at Aalto University鈥檚 Department of Applied Physics and Department of Chemistry. The groups are part of the Academy of Finland鈥檚 Centres of Excellence in Low Temperature Quantum Phenomena and Devices (LTQ) and Computational Nanosciences (COMP). The Academy of Finland and the European Research Council ERC funded the research.

Further information:
Professor Peter Liljeroth
peter.liljeroth@aalto.fi
tel: +358 50 363 6115

Aalto University School of Science
Department of Applied Physics

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura K枚n枚nen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
A modern building with a colourful tiled facade with solar panels. The sky is clear and light blue.
Press releases, Research & Art Published:

Carbon-based radicals at the frontier of solar cell technology

Could a single unpaired electron change the future of solar energy?