New AI system predicts how to prevent wildfires

Wildfires are a growing threat in a world shaped by climate change. Now, researchers at Aalto University have developed a neural network model that can accurately predict the occurrence of fires in peatlands. They used the new model to assess the effect of different strategies for managing fire risk and identified a suite of interventions that would reduce fire incidence by 50-76%.
The study focused on the Central Kalimantan province of Borneo in Indonesia, which has the highest density of peatland fires in Southeast Asia. Drainage to support agriculture or residential expansion has made peatlands increasingly vulnerable to recurring fires. In addition to threatening lives and livelihoods, peatland fires release significant amounts of carbon dioxide. However, prevention strategies have faced difficulties because of the lack of clear, quantified links between proposed interventions and fire risk.
The new model uses measurements taken before each fire season in 2002-2019 to predict the distribution of peatland fires. While the findings can be broadly applied to peatlands elsewhere, a new analysis would have to be done for other contexts. 鈥極ur methodology could be used for other contexts, but this specific model would have to be re-trained on the new data,鈥 says Alexander Horton, the postdoctoral researcher who carried out study.
The researchers used a convolutional neural network to analyse 31 variables, such as the type of land cover and pre-fire indices of vegetation and drought. Once trained, the network predicted the likelihood of a peatland fire at each spot on the map, producing an expected distribution of fires for the year.
Overall, the neural network鈥檚 predictions were correct 80-95% of the time. However, while the model was usually right in predicting a fire, it also missed many fires that actually occurred. About half of the observed fires weren鈥檛 predicted by the model, meaning that it isn鈥檛 suitable as an early-warning predictive system. Larger groupings of fires tended to be predicted well, while isolated fires were often missed by the network. With further work, the researchers hope to improve the network鈥檚 performance so it can also serve as an early-warning system.
The team took advantage of the fact that fire predictions were usually correct to test the effect of different land management strategies. By simulating different interventions, they found that the most effective plausible strategy would be to convert shrubland and scrubland into swamp forests, which would reduce fire incidence by 50%. If this were combined with blocking all of the drainage canals except the major ones, fires would decrease by 70% in total.
However, such a strategy would have clear economic drawbacks. 鈥楾he local community is in desperate need of long-term, stable cultivation to booster the local economy,鈥 says Horton.
An alternative strategy would be to establish more plantations, since well-managed dramatically reduce the likelihood of fire. However, the plantations are among the key drivers of forest loss, and Horton points out 鈥榯he plantations are mostly owned by larger corporations, often based outside Borneo, which means the profits aren't directly fed back into the local economy beyond the provision of labour for the local workforce.鈥
Ultimately, fire prevention strategies have to balance risks, benefits, and costs, and this research provides the information to do that, explains Professor Matti Kummu, who led the study team. 鈥榃e tried to quantify how the different strategies would work. It鈥檚 more about informing policy-makers than providing direct solutions.鈥
The findings were published in Nature's journal

Read more news

Time crystals could power future quantum computers
A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
Nanoparticles in Functional Textiles
Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations
AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen