柠檬导航

News

New kind of quantum transport discovered in a device combining high-temperature superconductors and graphene

Researchers combine graphene and high-temperature superconductors in a single device, demonstrating a theoretically predicted phenomena in practice for the first time and potentially paving the way for improved devices and new physics
""

Developing new quantum devices relies on controlling how electrons behave. A material called graphene, a single layer of carbon atoms, has fascinated researchers in recent years because its electrons behave as if they have no mass. For decades, scientists have also been interested in high-temperature superconductors: ceramic materials where electron interactions yield a macroscopic quantum state where electrons pair with each other. They do so at a temperature above the usual superconducting temperature of metals, which approaches absolute zero.

In a recent study published in, researchers from the SUNY Polytechnic Institute, Stony Brook University and the Brookhaven National Laboratory in the US, along with Aalto University in Finland, demonstrated a new electronic device that employs the unique ways in which electrons behave in these two materials 鈥 graphene and high-temperature superconductors.

The experiment, led by Sharadh Jois and Ji Ung Lee from SUNY with the support of theoretical work done by Jose Lado, assistant professor at Aalto, demonstrated a new quantum device that combines both graphene and an unconventional high-temperature superconductor. In particular, the team demonstrated that the electronic transport between graphene and the high-temperature superconductor was dominated by a unique transport process arising from the combination of two peculiar properties: graphene鈥檚 Klein tunneling and the superconductor鈥檚 Andreev reflection. The team showed experimentally, for the first time, that this transport process was fully consistent with the existing theoretical predictions concerning hybrid Andreev-Klein electronic transport.

Tunneling and reflecting

The study relies on two unique phenomena found in these materials: Klein tunneling in graphene and Andreev reflection in unconventional high-temperature superconductors. Because graphene electrons behave as if they have no mass, they can move in situations where normal electrons could not. This phenomenon is known as Klein tunneling. 

In turn, electrons in high-temperature superconductors form so-called Cooper pairs of two electrons. Cooper pairs can have unique mathematical structures, leading to unconventional superconducting states. When a Cooper pair forms exactly at the meeting point of a standard material such a piece of metal and a superconductor, it can result in a phenomenon called Andreev reflection, in which the pair 鈥渒icks back鈥 another kind of particle into the metal.

While Andreev reflection involving conventional superconductors and metals is well understood, doing the same with graphene electrons and high-temperature superconductors had not been demonstrated until now.

A milestone in graphene quantum devices

鈥楾he demonstration of electronic transport stemming from graphene鈥檚 Klein tunneling and unconventional superconducting pairing establishes a milestone in graphene-based quantum devices. This observation establishes the starting point to develop a whole new family of graphene-based superconducting quantum circuits that exploit unconventional superconductivity,鈥 Lado says.

The unique electronic properties of graphene have made it a promising platform for developing electronics that do not consume a lot of power. Conventional superconductors are key materials in a variety of quantum devices, and they are especially important in one of the strategies to build both qubit and topological quantum computers. By combining the two, the study鈥檚 results can open new fundamental physics in these materials and ultimately establish a whole new platform for quantum technology devices.

The research was published in Physical Review Letters:

More information:

Jose Lado

Jose Lado

Assistant Professor
T304 Dept. Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.