ÄûÃʵ¼º½

News

New machine learning approach speeds up search for molecular conformers

CEST researchers developed a new procedure based on active-learning Bayesian optimization (BO) and quantum chemistry methods to search for molecular conformers
A graphic showing a front cover describing the conformer search method
Photo showing CEST doctoral candidate Lincan Fang
CEST doctoral candidate Lincan Fang

Conformer search continues to be a topic of great interest in computational chemistry, drug design and material science. It is a challenging endeavor due to the high dimensionality of the search space and the computational cost of accurate quantum chemical methods needed to determine the molecular structure and energy. Previously, searching for molecular conformers meant that thousands of structures needed to be relaxed first. Therefore, this process took up considerable time and computational resources even when applied to small molecules.

A recent paper authored by Lincan Fang, Esko Makkonen, Milica Todorovic, Patrick Rinke, and Xi Chen proposes a molecular conformer search procedure that combines an active learning Bayesian optimization (BO) algorithm with quantum chemistry methods to address this challenge. BO active learning smartly samples the structures with low energies or high energy uncertainties, thus minimizing the required data points.

In this paper, the authors tested the procedure on four amino acids (cysteine, serine, tryptophan and aspartic acid).  After only 1000 single-point calculations and approximately 80 structure relaxations, which is less than 10% of the computational cost of the current fastest method, the team found the low-energy conformers in good agreement with experimental measurements and reference calculations.

First author Fang now plans to extend the method to search for structures of molecules that are bonded to nanoclusters.

This research paper is published in the Journal of Chemical Theory and Computation and has been selected as a supplementary cover of the issue.

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.