ÄûÃʵ¼º½

News

New surface makes oil contamination remove itself

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions.

Oil drop moves away from the landing point to the direction set by geometrical patterning of the surface. Video: Ville Jokinen, Visa Noronen, Sebastian Röder.

Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on these surfaces, drops move away from the landing point to the direction set by asymmetric geometrical patterning of the surface. The surfaces open new avenues for power-free liquid transportation and oil contamination self-removal applications in analytical and fluidic devices.

– We developed surfaces that are able to move liquid oil droplets by surface tension forces. Droplets from anywhere within the pattern will spontaneously move to the center of the pattern, tells Postdoctoral Researcher Ville Jokinen.

- Although surface engineering facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets posed a major challenge because of their low surfacetension, explains Postdoctoral Researcher Xuelin Tian.

Oil drop moves away from the landing point to the direction set by asymmetric geometrical patterning of the surface. Photo: Ville Jokinen / Aalto University

New surfaces are also able to move low surface tension liquids other than oil. They work for water, wine and even pure ethanol. Directional liquid transportation of water is also found in nature, for instance, in cactus needles and the shells of desert beetles. Researchers see a range of industrial applications.

– The droplets position themselves very accurately at the center of the pattern. This could be used to deposit arrays of functional materials. We envision the patterns being used the other way around as well, for instance, to transport unwanted stray droplets away from critical areas of devices, such as to prevent clogging of nozzles in inkjet printing, says Professor Robin Ras.

Contact details:

Postdoctoral Researcher Ville Jokinen
Aalto University (Finland)
ville.p.jokinen@aalto.fi
Tel. +358 40 587 0425

Professor Robin Ras
Aalto University (Finland)
robin.ras@aalto.fi
Tel. +358 50 432 6633

Research article: Juan Li, Qi Hang Qin, Ali Shah, Robin H. A. Ras, Xuelin Tian, Ville Jokinen: Oil droplet self-transportation on oleophobic surfaces. Science Advances 2016. DOI 10.1126/sciadv.1600148

(advances.sciencemag.org)

  • Updated:
  • Published:
Share
URL copied!

Read more news

Orcid
Research & Art Published:

Aalto University is introducing ORCID’s Researcher Connect service

Aalto University is introducing ORCID's Researcher Connect service, which facilitates information transfer between researchers' ORCID profiles and the university's research information management system, ACRIS.
Two wooden sculptures with pointed ends facing each other on a white surface.
Research & Art Published:

Nature of Process: Exhibition by the students of the ‘Personal Exploration’ Course

Nature of Process is a multi-material exhibition of 14 Master´s students of Aalto ARTS
Eden Telila pictured at a ski slope
Cooperation, Studies Published:

Eden Telila's master's thesis contributed to Ramboll's geotechnical toolkit

Geoengineering alum Eden Telila helped Ramboll automate manual tasks.
A group of people giving thumbs up in front of screens displaying 'Doc+ Dialogues'. Chairs and wooden walls are in the background.
Research & Art, Studies Published:

Doc+ connects research impact with career direction - join the events!

Doc+ panels have brought together wide audiences in February and continue in March with two events to discuss doctoral careers and their diversity.