ʵ

News

Putting a new spin on plasmonics

Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects.
Magnetic nanoparticles arranged in arrays put a twist on light: depending on the distance between the nanoparticles, one frequency of light (visible to the human eye by its colour) resonates in one direction; in the other direction, light (induced by quantum effects in the magnetic material) is enhanced at a different wavelength.

Researchers experimentally demonstrated that patterning of magnetic materials into arrays of nanoscale dots can lead to a very strong and highly controllable modification of the polarization of light when the beam reflects from the array. This discovery could increase the sensitivity of optical components for telecommunication and biosensing applications. The result was just published in Nature Communications journal.

The coupling between light and magnetization in ferromagnetic materials arises from quantum mechanical interactions. These interactions result in magneto-optical effects that modify the properties, such as the polarization axis or intensity of the light. Interactions between light and matter are enhanced at the nanoscale. This is a key motivation in the field of plasmonics, which studies light interacting with metal nanostructures.

A nano-sized, metallic nanoparticle behaves very much like an antenna for visible wavelengths; such antennas are familiar to us in numerous everyday devices that operate on much longer radio- and micro-waves. The researchers took advantage of a phenomenon known as surface lattice resonances in which all the nanoparticles, the little antennas, radiate in unison in an array. The key to this is to assemble the magnetic nanoantennas on a length scale that matches the wavelength of the incoming light.

In periodic arrays, nanoparticles interact strongly with each other, giving rise to collective oscillations. Such behavior has been previously reported in noble metal nanoparticles and researched extensively at Aalto University in the Quantum Dynamics (QD) research group.

Now, a collaborative effort between QD and the Nanomagnetism and Spintronics (NanoSpin) group shows that such collective oscillations can also be observed in magnetic materials. The surface lattice resonances enhance the light polarization change in ferromagnetic materials, the so-called magneto-optical Kerr effect.

"A key finding of our research was that the frequency, that is the colour of light, for which this happens can be made different from the frequency where the purely optical effect is strongest. The separation of magneto-optical and optical signals was achieved by choosing a different distance between the nanoparticles in the two directions of the array", explains Professor Päivi Törmä.

Using magnetic materials was not an obvious choice. So far, optical activity in ferromagnetic materials has been limited by their high resistance, which makes it impossible to observe the impressive plasmon resonances seen in noble metals.

"However, by ordering the nanoparticles in arrays and taking advantage of collective resonances, this problem was mitigated. Or result opens an important new direction in the research field that focuses on the coupling of light and magnetization at the nanoscale", says Professor Sebastiaan van Dijken.

The benefits of collaboration between research groups – those working in different fields – was essential for the success of the project. The authors stress that this kind of project would not have been possible to achieve without extensive knowledge in both optics and magnetism at the nanoscale. Their innovative work has created the groundwork for further explorations and has the potential to advance applications beyond fundamental physics. The joint team used the nanofabrication facilities in the Micronova cleanroom as well as the electron microscopy tools available in the Nanomicroscopy Center.

The results are published this week in the journal Nature Communications. For the article "Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays" in Nature Communications, please visit  

Contact information:

Professor Päivi Törmä
paivi.torma@aalto.fi
Tel: +358 50 3826770
Quantum Dynamics research group:
Centre of Excellence in Computational Nanoscience, COMP:
Aalto University School of Science

Professor Sebastiaan van Dijken
Nanomagnetism and Spintronics group:
sebastiaan.van.dijken@aalto.fi
Tel +358 50 3160969
Department of Applied Physics
Aalto University School of Science:
 

Otaniemi research infrastructure for micro- and nanotechnologies, Otanano: /en/otanano

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura Könönen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Mikučioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled “Nanoparticles Integrated Functional Textiles”.
A modern building with a colourful tiled facade with solar panels. The sky is clear and light blue.
Press releases, Research & Art Published:

Carbon-based radicals at the frontier of solar cell technology

Could a single unpaired electron change the future of solar energy?