柠檬导航

News

Researchers discover new method for heat dissipation in electronic components

By managing the flow of phonons in semiconductor nanowires, engineers can create smaller and faster devices.

Managing heat flows in semiconductor materials is a significant challenge when creating even smaller and faster computer chips, efficient solar panels and better lasers and biomedical devices. By optimising thermal management in microchips, they can be packed more densely.

For the first time, an international research group, that includes Aalto University researchers, has succeeded in controlling the energy spectrum of acoustic phonons by scaling the dimensions of the semiconductor structure down to the nanometre level. Acoustic phonons, i.e. lattice vibration quanta, are quasi-particles that participate in the transfer of heat in materials. These results will have significant effects on the heat management of electronic components.

The group utilised GaAs nanowires made in Finland, and Brillouin-Mandelstam scattering to study how phonons move in crystalline nanostructures.

鈥榃e can precisely control the nanowire's dimensions at the nanoscale by combining electron-beam lithography and epitaxy. The nanowires utilised in the research were around 80 nm in diameter. Precise control of the dimensions enabled modifying the energy spectrum of phonons,鈥 notes Joona-Pekko Kakko, who is writing his doctoral dissertation at the Department of Micro- and Nanosciences.

Managing the dispersion of phonons is essential when improving the heat dissipation of components at the nanoscale, which has formed the greatest obstacle for shrinking components further. Dispersion managing can also be utilised when improving the efficiency of thermoelectric generation. The reduction of thermal conductivity with phonons will help thermoelectric devices that produce electricity by utilising the temperature differences in semiconductors.

鈥極ver the years, the only conceivable method for altering the thermal conductivity of nanostructures was to tailor the interfaces of nanostructures, which then leads to the scattering of acoustic phonons. Our experiments show that the confining acoustic phonons in nanowires alters their velocity, which then changes their interaction with electrons, among others, and their ability to conduct heat. Our results creates new possibilities for optimising the heat and electric conductivity properties of semiconductor materials,鈥 says Professor Alexander Balandin, who lead the research.

The research was conducted in cooperation between Professor Alexander Balandin from the University of California, Riverside and Aalto University Professor Harri Lipsanen, and the results were published in an article in Nature Communications on Thursday, 10 November. The title of the article is 鈥淒irect observation of confined acoustic phonon polarization branches in free-standing nanowires鈥.

Link to the article

The work was supported by project Moppi in Aalto University鈥檚 Energy Efficiency Programme.

Further information:

Doctoral candidate Joona-Pekko Kakko
joonapekko.kakko@aalto.fi

Professor Harri Lipsanen
harri.lipsanen@aalto.fi
tel. +358 50 4339 740

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.