ÄûÃʵ¼º½

News

Simple accuracy boost for core excitation calculations

Relativistic corrections that are important for core excitations in molecules and materials are incorporated in complex quantum mechanical calculations in an efficient manner.
Relativistic corrections (RC) greatly improve the accuracy of evGW0 calculations for the CORE65 benchmark set of molecular core excitations
Relativistic corrections (RC) greatly improve the accuracy of costly quantum mechanical calculations (evGW0) for the CORE65 benchmark set of molecular core excitations.

Core level spectroscopy is an important experimental technique in physics, chemistry and materials science. Core level experiments are often accompanied by quantum mechanical calculations that aid the interpretation of the measured data. A promising recent development is to use the GW Green's function formalism as the quantum mechanical method of choice, which offers several distinct advantages over the conventional density-functional theory (DFT) choice.

CEST researchers have now derive a relativistic correction scheme that improves the accuracy of 1s core-level binding energies calculated from Green’s function theory in the GW approximation. The scheme is element specific and does not add computational overhead. It reduces the mean absolute error (MAE) of previously reported benchmark set of 65 core-state excitations [D. Golze et al., J. Phys. Chem. Lett. 11, 1840–1847 (2020)] from 0.55 eV to 0.30 eV and eliminates the species dependence of the MAE, which otherwise increases with the atomic number. The correction terms are available in the corresponding publication and can now be widely deployed in molecular and materials science.

More details can be found in the following publication:

Relativistic correction scheme for core-level binding energies from GW,  Levi Keller, Volker Blum,  Patrick Rinke, and  Dorothea Golze,

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.