Single-atom dopants in metallic nanoparticles can offer high tunability for plasmonic-catalytic applications
In plasmonic-catalytic nanoparticles a plasmonic metal acts antenna for light absorption, whereas the catalytic metal component facilitates the reaction. Plasmonic nanoparticles can absorb light at certain resonant wavelengths very efficiently. As the light-induced plasmonic excitation in the nanoparticle decays, non-thermal high-energy electrons and holes, so called 鈥渉ot carriers鈥, are formed. Hot carriers can interact with nearby molecules and enhance chemical reactions. Typically, the reactions are catalyzed by carriers of certain energies, which is why the ability to control the energies of the hot carriers is important. Experimental investigations of the plasmonic-catalytic properties are challenging and time consuming, but computational tools can reveal quantum mechanical insight and trends.
The CEST group members Daniel Sorvisto, Tuomas Rossi, and Patrick Rinke recently published their computational exploration of single-atom dopant effects in plasmonic nanoparticles. The goal of the study was to analyze the effects of doping on the hot-carrier generation in the nanoparticle and the extent to which hot carriers can be tuned. Computations are based on Kohn-Sham DFT and TDDFT. Two different nanoparticle structures of a few hundred atoms, three different plasmonic metals, and five different catalytic metals are included in the study. Results show that the local hot-carrier generation can be tuned by choosing the right dopant element while the plasmonic response of the nanoparticle as a whole is not significantly affected by the dopant. As the resonant wavelengths of nanoparticles can also be tuned by the overall shape, size, and composition of the nanoparticle, the findings of the study indicate that plasmonic nanoparticles could be simultaneously tailored to absorb light efficiently and generate hot carriers tuned to a specific purpose. An interesting next step would be to study the catalytic performance and include the interactions between the nanoparticles and reactant molecules in the modeling.
The paper is published in The Journal of Physical Chemistry C ().
Read more news
Research Council of Finland establishes a Center of Excellence in Quantum Materials
The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors
The BEST research project is developing new types of sealing, bearing, and damping technology.
The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges
Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.