ʵ

News

Stopping the unstoppable with atomic bricks

Aalto University theorist part of team that developed method for trapping elusive electrons
Scanning tunneling microscope tip confining electrons in graphene

Graphene's unique 2D structure means that electrons travel through it differently to most other materials. One consequence of this unique transport is that applying a voltage to them doesn't stop the electrons like it does in most other materials. This is a problem because to make useful applications out of graphene and its unique electrons like quantum computers, it is necessary to be able to stop and control graphene electrons.

An interdisciplinary team of scientists from the Universidad Autonoma de Madrid (Spain), Université Grenoble Alpes (France), International Iberian Nanotechnology Laboratory (Portugal) and Aalto University has managed to solve this long-standing problem. They combined experimental researchers including Eva Cortés del Río, Pierre Mallet, Héctor González‐Herrero, José María Gómez‐Rodríguez, Jean‐Yves Veuillen and Iván Brihuega with theorists, including Joaquín Fernández-Rossier and Jose Lado, assistant Professor in the department of Applied Physics at Aalto.

The experimental team used atomic bricks to build walls capable of stopping the graphene electrons. This was achieved by creating atomic walls that confined the electrons, leading to structures whose spectrum was then compared with theoretical predictions, demonstrating that electrons were confined. In particular, it was obtained that the engineered structures gave rise to nearly perfect confinement of electrons, as demonstrated from the emergence of sharp quantum well resonances with a remarkably long lifetime.

The work, published this week in , demonstrates that impenetrable walls for graphene electrons can be created by collective manipulation of a large number of hydrogen atoms. In the experiments, a scanning tunnelling microscope was used to construct artificial walls with sub nanometric precision. This led to graphene nanostructures of arbitrarily complex shapes, with dimensions ranging from two nanometres to one micron.

Importantly, the developed method is non-destructive, allowing to erase and rebuild the nanostructures at will, providing an unprecedented degree of control to create artificial graphene devices. The experiments demonstrate that the engineered nanostructures are capable of perfectly confining the graphene electrons in these artificially designed structures, overcoming the critical challenge imposed by Klein tunnelling. Ultimately, this opens up a plethora of exciting new possibilities, as the created nanostructures realize graphene quantum dots that can be selectively coupled, opening ground-breaking possibilities for artificially designed quantum matter.

Read More

“Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub‐Nanometer Precision” Advanced Materials

Contact

 Jose Lado

Jose Lado

Assistant Professor
T304 Dept. Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.