ÄûÃʵ¼º½

News

The human ear detects half a millisecond delay in sound

Researchers discover how accurately the human ear can detect time delay in sounds in different frequencies.
 Äänen viivettä on tutkittu Suomen hiljaisimmassa huoneessa Otaniemessä sijaitsevassa kaiuttomassa huoneessa.  Kuva: Aalto-yliopisto / Mikko Raskinen
Delay variation in sound has been studied in the quietest room in Finland. Anechoic chambers at Acoustics Lab is located at Otaniemi. Photo: Aalto University / Mikko Raskinen

Hearing is one of the most sensitive of our senses, and even small issues in sound quality can interfere with listening experiences.

Acoustics researchers at Aalto University, in collaboration with professional monitoring loudspeaker manufacturer Genelec, have investigated just how small of a variation in sound delay the human ear can detect in the most sensitive frequency range for hearing. People normally hear sound in the range of 20 and 20,000 hertz.

What makes this study unique is that the researchers studied not only the effect of delays, but also how listeners perceive a negative delay in a range of frequencies. In practice, this means that researchers could determine how sensitively a person hears a sound event in a particular frequency range when it arrives before another sound.

The negative delay, adjusted in fractions of a thousandth of a second, was produced by filters that shift audio selectively at certain frequencies to a different point in time without affecting the magnitude of sound.

‘The frequency-selective, time-reverse filtering technique we use is novel technology in the field of digital signal processing. To achieve a negative delay, we need to move into the future. This phenomenon was produced with software that acts – in a manner of speaking – as a time machine,’ explains Juho Liski, postdoctoral researcher in Aalto University.

A person sitting with headphones on in front of a computer screen.
Test persons focused on the sounds in the listening rooms and recorded their findings on a computer. Photo: Aalto University / Niina Norjamäki

Millisecond latency matters

In the listening experiment, twelve subjects listened to processed and unprocessed sound, and the researchers studied whether participants were able to reliably distinguish between them. The sounds easiest to identify were a castanet, a percussion instrument, and short clicks.

‘The audibility of the level variation of a loudspeaker across frequencies is well known, but the audibility of the group delay variation has been less studied. Variation in the group delay results in certain frequency ranges moving forward or backward in time compared to other frequencies,’ says Aalto University Professor Vesa Välimäki.

Researchers recognise that audio is delayed as a function of frequency as it passes through a loudspeaker, but questions have remained on how audible the resulting delay variations in audio are at different frequencies.

‘The study shows that people can hear differences when audio starts at certain frequencies ahead of time. A half of a millisecond delay in certain frequencies relative to others was also audible. The amount of delay needed to exceed the detection threshold varies considerably at different frequencies, but delays were especially heard when sounds started or stopped,’ Välimäki and Liski say when discussing the results.

The development of digital signal processing has enabled very precise sound processing, opening new possibilities for acoustics research and development.

‘The main goal for our development work is to reproduce complete audio that has been recorded, but nothing extra. It is vital that loudspeakers can create a precise stereo sound stage and reproducing time-accurate sound is a central part of this. Research collaboration with Aalto University deepens our understanding of the accuracy requirements needed to design loudspeakers. We are interested in the limit beyond which a person can no longer perceive improvements when the time precision in reproduced sound improves,’ says Aki Mäkivirta, Genelec's R&D director.

The results of the study have been published in the industry-leading IEEE / ACM Transactions on Audio, Speech, and Language Processing. You can read the Open Access article

Perceiving auditory delays has been studied at the Aalto University Acoustics Laboratory in recent years in the IMPRESS and IMPRESS2 projects funded by Genelec.

Further information:

Juho Liski
Postdoctoral Researcher, Aalto University, Department of Signal Processing and Acoustics
juho.liski@aalto.fi
+ 358 40 547 5560

Vesa Välimäki
Professor, Aalto University, Department of Signal Processing and Acoustics
vesa.valimaki@aalto.fi
+ 358 50 569 1176

Aki Mäkivirta
R & D Director, Genelec
aki.makivirta@genelec.com
+ 358 50 553 5915

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.