柠檬导航

News

The smallest robotic arm you can imagine is controlled by artificial intelligence

Researchers used deep reinforcement learning to steer atoms into a lattice shape, with a view to building new materials or nanodevices.
Schematic of atoms being moved with tweezers at the nano-scale

In a very cold vacuum chamber, single atoms of silver form a star-like lattice. The precise formation is not accidental, and it wasn鈥檛 constructed directly by human hands either. Researchers used a kind of artificial intelligence called deep reinforcement learning to steer the atoms, each a fraction of a nanometer in size, into the lattice shape. The process is similar to moving marbles around a Chinese checkers board, but with very tiny tweezers grabbing and dragging each atom into place.

The main application for deep reinforcement learning is in robotics, says postdoctoral researcher I-Ju Chen. 鈥淲e鈥檙e also building robotic arms with deep learning, but for moving atoms,鈥 she explains. 鈥淩einforcement learning is successful in things like playing chess or video games, but we鈥檝e applied it to solve technical problems at the nanoscale.鈥 

So why are scientists interested in precisely moving atoms? Making very small devices based on single atoms is important for nanodevices like transistors or memory. Testing how and whether these devices work at their absolute limits is one application for this kind of atomic manipulation, says Chen. Building new materials atom-by-atom, rather than through traditional chemical techniques, may also reveal interesting properties related to superconductivity or quantum states.

The silver star lattice made by Chen and colleagues at the Finnish Center for Artificial Intelligence FCAI and Aalto University is a demonstration of what deep reinforcement learning can achieve. 鈥淭he precise movement of atoms is hard even for human experts,鈥 says Chen. 鈥淲e adapted existing deep reinforcement learning for this purpose. It took the algorithm on the order of one day to learn and then about one hour to build the lattice.鈥 The reinforcement part of this type of deep learning refers to how the AI is guided鈥攖hrough rewards for correct actions or outputs. 鈥淕ive it a goal and it will do it. It can solve problems that humans don鈥檛 know how to solve.鈥

Applying this approach to the world of nanoscience materials is new. Nanotechniques can become more powerful with the injection of machine learning, says Chen, because it can accelerate the parameter selection and trial-and-error usually done by a person. 鈥淲e showed that this task can be completed perfectly through reinforcement learning,鈥 concludes Chen. The group鈥檚 research, led by professors Adam Foster and Peter Liljeroth, was recently published in .

Reference

Chen IJ, Aapro M, Kipnis A, Ilin A, Liljeroth P, Foster AS (2022). Precise atom manipulation through deep reinforcement learning. Nat Comms.

FCAI

The Finnish Center for Artificial Intelligence FCAI is a research hub initiated by Aalto University, the University of Helsinki, and the Technical Research Centre of Finland VTT. The goal of FCAI is to develop new types of artificial intelligence that can work with humans in complex environments, and help modernize Finnish industry. FCAI is one of the national flagships of the Academy of Finland.

Picture of OtaNano lab equipment.

OtaNano

OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura K枚n枚nen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen