Understanding the nanostructure formation in block copolymer thin film
The paper “Understanding nanodomain morphology formation in dip-coated PS-b-PEO thin films” was published in the September issue of Nanoscale Advances (Volume 3, Issue 17).
The research work for the manuscript was conducted under the SUPER-WEAR project (Super-stretchable functionalized materials and fibers for third generation wearable technology) funded by the Academy of Finland and led by Prof. Jaana Vapaavuori.
All experiments were performed by Hoang M. Nguyen, and the TEM analysis was done by Swarnalok De. The development of the theory was a joint effort of both Hoang M. Nguyen and Ariane V. Mader.
Hoang M. Nguyen about the publication: "Block copolymer (BCP) thin films prepared by dip-coating are increasingly investigated, owing to the many promising application areas, the facility, and the industrial scalability of this technique. Yet, the effect of different dip-coating parameters on BCP nanostructure formation is still underdeveloped and the results of previous literature are limited to a few block copolymers. Here, we study the effect of the withdrawal rate and solvent selectivity on the morphology evolution of dip-coated polystyrene-b-poly(ethylene oxide) thin films by applying a wide range of dip-coating speeds and altering the volume ratio of the tetrahydrofuran–water solvent system. Notably, we have obtained a hexagonally packed BCP pattern with long-range order without the need for post-annealing processes."
Link to the publication:
Keywords: block copolymer, dip-coating, PS-b-PEO, self-assembly
Related content:
Multifunctional Materials Design
Group led by Professor Jaana Vapaavuori
SUPER-WEAR project
Super-stretchable functionalized materials and fibers for third generation wearable technology
Read more news
Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors
The BEST research project is developing new types of sealing, bearing, and damping technology.
The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges
Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January 2026
Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.