柠檬导航

News

Unlocking radiation-free quantum technology with graphene

鈥淗eavy fermions鈥 are an appealing theoretical way to produce quantum entangled phenomena, but until recently have been observed mostly in radioactive compounds. A new paper has shown it is possible to make heavy fermions in subtly modified graphene, which is much cheaper and safer
Scehmatic of a heavy fermion on graphene
Schematic of how heavy fermions form in twisted graphene sheets (credit Jose Lado, Aalto University)

Rare-earth compounds have fascinated researchers for decades due to the unique quantum properties they display, which have so far remained totally out of reach of everyday compounds. One of the most remarkable and exotic properties of those materials is the emergence of exotic superconducting states, and particularly the superconducting states required to build future topological quantum computers. While these specific rare-earth compounds, known as heavy fermion superconductors, have been known for decades, making usable quantum technologies out of them has remained a critically open challenge. This is because these materials contain radioactive elements, such as uranium and plutonium, rendering them of limited use in real-world quantum technologies.

New research has now revealed an alternative pathway to engineer the fundamental phenomena of these rare-earth compounds solely with graphene, which has none of the safety problems of traditional rare-earth compounds. The exciting result in the new paper shows how a quantum state known as a 鈥渉eavy fermion鈥 can be produced by combining three twisted graphene layers. A heavy fermion is a particle 鈥 in this case an electron 鈥 that behaves like it has a lot more mass than it actually does. The reason it behaves this way stems from unique quantum many-body effects that were mostly only observed in rare-earth compounds until now. This heavy fermion behavior is known to be the driving force of the phenomena required to use these materials for topological quantum computing. This new result demonstrates a new, non-radioactive way of achieving this effect using only carbon, opening up a pathway for sustainably exploiting heavy fermion physics in quantum technologies. 

In the paper authored by Aline Ramires, (Paul Scherrer Institute, Switzerland) and Jose Lado (Aalto University), the researchers show how it is possible to create heavy fermions with cheap, non-radioactive materials. To do this, they used graphene, which is a one-atom thick layer of carbon. Despite being chemically identical to the material that is used in regular pencils, the sub-nanometre thickness of graphene means that it has unexpectedly unique electrical properties. By layering the thin sheets of carbon on top of one another in a specific pattern, where each sheet is rotated in relation to the other, the researchers can create the quantum properties effect that results in the electrons in the graphene behaving like heavy fermions. 

鈥淯ntil now, practical applications of heavy fermion superconductors for topological quantum computing has not been pursued much, partially because it required compounds containing uranium and plutonium, far from ideal for applications due to their radioactive nature鈥, says Professor Lado, 鈥淚n this work we show that one can aim to realize the exactly very same physics just with graphene. While in this work we only show the emergence of heavy fermion behavior, addressing the emergence of topological superconductivity is a natural next step, which could potentially have a groundbreaking impact for topological quantum computing.鈥

Topological superconductivity is a topic of critical interest for quantum technologies, also tackled by alternative strategies in other papers from Aalto University Department of Applied Physics, including a previous paper by Professor Lado. 鈥淭hese results potentially provide a carbon-based platform for exploitation of heavy fermion phenomena in quantum technologies, without requiring rare-earth elements鈥, concludes Professor Lado.

The paper, 鈥楨mulating Heavy Fermions in Twisted Trilayer Graphene鈥 is published in the journal Physical Review Letters 

Contact

Jose Lado

Jose Lado

Assistant Professor
T304 Dept. Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

TAIMI-hanke rakentaa tasa-arvoista ty枚el盲m盲盲. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life 鈥 a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.