Wide bandgap oxides with ionic conductor operate as single-layer fuel cell
Nanocomposite fuel cells have recently been shown to be able to work as a 1-layer fuel cell instead of a 3-layer (cathode,electrolyte, anode) traditional fuel cell. The 1-layer fuel cell is made of a mixture of semiconducting and ionic materials which contain all functionalities of a fuel cell. Basically, such as fuel cell would have a major potential for mass production because of its simple structure. The working principle of the single layer fuel cell has been debated. Now Aalto University researchers have verified the underlying mechanisms of this fuel cell type by using wide bandgap oxide materials (LiNiZn) with gadolinium-doped ceria. The oxides work as an insulator against electrons in the material preventing short-circuting of the fuel cell. It was found that the material mixture is a protonic conductor. The test fuel cells built reached a power density of 357 mW/cm2 at 550 C without using catalytic current collectors.
The results were published in Nano Energy 53 (2018) 391-397.
Read more news
Research Council of Finland establishes a Center of Excellence in Quantum Materials
The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors
The BEST research project is developing new types of sealing, bearing, and damping technology.
The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges
Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.