ʵ

Uutiset

Tutkijat onnistuivat kiertämään kvanttimekaniikan kulmakivenä pidetyn epätarkkuusperiaatteen - välineinä kylmät kvanttirummut

Kvanttimekaniikassa tunnetun Heisenbergin epätarkkuusperiaatteen mukaan hiukkasen paikkaa ja nopeutta ei voida tietää samanaikaisesti. Tutkijat osoittavat nyt, kuinka makroskooppisen kokoiset värähtelevät rumpukalvot saadaan kvanttitilaan, jossa epätarkkuusperiaate voidaan kiertää.
The drumheads exhibit a collective quantum motion. Picture: Juha Juvonen.
Heisenbergin epätarkkuusperiaate voidaan kiertää kahdella värähtelevällä nanorummulla. Rummut saatiin tutkimuksessa lomittuneeseen kvanttitilaan, jossa kaukana toisistaan olevat kappaleet jakoivat toistensa ominaisuuksia. Kuva: Juha Juvonen.

Kvanttimekaniikan tärkeimpiä tuloksia on epätarkkuusperiaate, jonka Werner Heisenberg esitti 1920-luvun lopulla. Sen mukaan alkeishiukkaset, esimerkiksi sähkövirtaa kuljettavat elektronit, voivat käyttäytyä aaltoliikkeen tavoin. Tällöin hiukkasella ei voi olla samanaikaisesti hyvin määriteltyä paikkaa sekä nopeutta. Esimerkiksi nopeuden mittaaminen aiheuttaa häiriöitä hiukkasen paikalle, eikä paikkaa voida sen vuoksi tarkkaan määrittää.

Aalto-yliopiston professori Mika A. Sillanpään vetämä, Suomen Akatemian - huippuyksikköön kuuluva tutkimusryhmä on nyt löytänyt tavan kiertää epätarkkuusperiaate. Tulokset julkaistiin juuri arvostetussa Science-tiedelehdessä. Tutkijatiimiin kuului myös kokeen teoreettisen mallin kehittämisestä vastannut tutkijatohtori Matt Woolley South Walesin yliopistosta Australiasta.

Tutkijat käyttivät mittauksissa kahta rumpukalvoa, jotka ovat leveydeltään noin viidesosa hiuksen paksuudesta ja joita voidaan ajatella yhtenä värähtelijänä. Vaikka nanorummut ovat paljon yksittäisiä atomeita suurempia, ne saatiin kokeissa käyttäytymään kvanttimekaanisesti.

”Kahden rummun värähtelyt päätyvät kollektiiviseen kvanttitilaan, jossa ne värähtelevät vastakkaisissa vaiheissa siten, että kun toinen on liikkeen yhdessä ääripäässä, toinen on vastaavasti toisessa samalla ajanhetkellä. Tällaisessa tilanteessa rumpujen hetkellisen sijainnin kvanttimekaaninen epämääräisyys kumoutuu”, sanoo tutkijatohtori Laure Mercier de Lépinay Aalto-yliopistosta.

Tutkijat pystyivät siis häiriöttä mittaamaan samanaikaisesti rumpukalvojen paikan ja nopeuden – minkä ei Heisenbergin epätarkkuusperiaatteen perusteella pitäisi olla mahdollista. Tämän ansiosta tutkijat voivat määrittää värähtelijään vaikuttavia erittäin heikkoja voimia.

”Toisella rummulla on siis ikään kuin negatiivinen massa, jolloin se vastaa kaikkiin voimiin, myös kvanttimekaanisiin, vastakkaisella tavalla”, Sillanpää sanoo.

Tutkijat käyttivät ideaa hyväkseen ja esittivät toistaiseksi vahvimman todisteen siitä, että suuret kappaleet voivat päätyä niin sanottuun lomittuneeseen kvanttitilaan. Lomittuneessa tilassa hiukkaset tai kappaleet jakavat toistensa ominaisuuksia tavalla, joka on arkijärjen vastaista. Lomittuminen on perusta käynnissä olevalle kvanttiteknologian läpimurrolle. Kvanttitietokone voi suorittaa esimerkiksi lääkkeiden kehityksessä tarvittavaa laskentaa paljon nopeammin kuin mikään koskaan rakennettavissa oleva supertietokone.

Suurehkoissa kappaleissa, kuten nyt tutkituissa värähtelevissä rumpukalvoissa, kvanttimekaaniset ilmiöt tuhoutuvat hyvin herkästi ympäristön häiriöiden vaikutuksesta. Mittaukset suoritettiinkin hyvin matalissa lämpötiloissa, eli asteen sadasosan päässä absoluuttisesta nollapisteestä, -273 asteesta.

Tulevaisuudessa tutkimusryhmä käyttää näitä ideoita ja menetelmiä laboratoriotutkimuksissa, joissa pyritään selvittämään kvanttimekaniikan ja painovoiman yhteyttä. Värähtelevät kvanttirummut voivat olla myös sopivia kvanttiteknologiassa yhdistämään kvanttitietokoneita toisiinsa.

Tutkimuksessa on käytetty . Kansallinen ja avoin OtaNano tarjoaa korkeatasoisen kokeellisen ympäristön ja OtaNanon operoinnista vastaavat Aalto-yliopisto ja Teknologian tutkimuskeskus VTT.

Artikkeli:

The highly competed ERC Advanced Grant, awarded to leading top researchers, is the third ERC grant won by Professor Mika A. Sillanpää. In 2009, he received the ERC Starting Grant targeted at talented young researchers and, in 2013, he was awarded the ERC Consolidator Grant intended for top researchers establishing their careers. Picture: Aalto University.

Fyysikko Mika A. Sillanpää sai jo kolmannen EU:n miljoonarahoituksen – uusi tutkimushanke sovittaa yhteen kvanttimekaniikkaa ja yleistä suhteellisuusteoriaa

Tutkijat ratkovat sata vuotta vanhaa fysiikan arvoitusta pienten kultapallojen ja äärimmäisen matalien lämpötilojen avulla. Värähtelevien pallojen välisen erittäin heikon painovoiman havainnointi voi ratkaista mysteerin.

Uutiset
  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Henkilö seisoo ulkona syksyllä, yllä harmaa huppari ja vihreä takki. Taustalla puut oransseine lehtineen.
Nimitykset Julkaistu:

Esittelyssä Qi Chen: Luotettava tekoäly tarvitsee algoritmeja, jotka selviävät yllätyksistä

Tekoälyn kehittäjien on keskityttävä sovellusten turvallisuuteen ja oikeudenmukaisuuteen, sillä ne liittyvät suoraan yhteiskuntien luottamukseen ja tasa-arvoon, sanoo tutkija Qi Chen.
Henkilö pukeutuneena vaaleanharmaaseen huppariin seisoo sisätiloissa, taustalla tiiliseinä ja vihreitä kasveja.
Nimitykset, Yliopisto Julkaistu:

Tekoälyn ja ihmisen erimielisyys on tutkijalle jännä arvoitus

Francesco Croce tutkii multimodaalisia perustamalleja, erityisesti niiden hyökkäyksensietokykyä.
Eric Malmi Otaniemen kampuksella Laura Könösen Glitch-teoksen edessä. Kuva: Matti Ahlgren
Nimitykset Julkaistu:

Räppialgoritmi vei Google DeepMindille tutkimaan kielimalleja – nyt Eric Malmi aloittaa vierailevana professorina Aallossa

Eric Malmi on väitellyt Aalto-yliopistosta vuonna 2018, aiheenaan tekoälymenetelmien kehittäminen historiallisten aineistojen ja sukupuiden linkittämiseen. Google DeepMindilla hän on kehittänyt Gemini-kielimalleja sekä shakkitekoälyä. Aaltoon hänet toi Suomen ELLIS-instituutti.
Moderni rakennus, jossa värikäs laatoitettu julkisivu, jossa integroitu aurinkopaneeli. Taivas on kirkas ja vaaleansininen.
Mediatiedotteet, Tutkimus ja taide Julkaistu:

Hiilipohjaiset radikaalit ovat tulevaisuuden aurinkokennoteknologiaa

Kansainvälisen tutkimusryhmän löydös on merkittävä askel kohti kevyitä, joustavia ja energiatehokkaita aurinkokennoja.