柠檬导航

News

A breakthrough in photonic time crystals could change how we use and control light

The new discovery could dramatically enhance technologies like lasers, sensor, and optical computing in the near future.
Colourful shapes that represent photonic time crystals
Photonic time crystals are optical materials that exponentially amplify light. Photo: Xuchen Wang

An international research team has for the first time designed realistic photonic time crystals 鈥 exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging, and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices.

鈥淭his work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries. From high-efficiency light amplifiers and advanced sensors to innovative laser technologies, this research challenges the boundaries of how we can control the light-matter interaction,鈥 says Assistant Professor Viktar Asadchy from Aalto University, Finland.

Photonic time crystals represent a unique class of optical materials. Unlike traditional crystals, which have spatially repeating structures, photonic time crystals remain uniform in space but exhibit a periodic oscillation in time. This distinctive quality creates 鈥渕omentum band gaps,鈥 or unusual states where light pauses inside the crystal while its intensity grows exponentially over time. To grasp the peculiarity of light鈥檚 interaction within a photonic time crystal, imagine light traversing a medium that switches between air and water quadrillions of times per second 鈥 a remarkable phenomenon that challenges our conventional understanding of optics.

Unlocking new possibilities

One potential application for the photonic time crystals is in nanosensing. 

鈥淚magine we want to detect the presence of a small particle, such as a virus, pollutant, or biomarker for diseases like cancer. When excited, the particle would emit a tiny amount of light at a specific wavelength. A photonic time crystal can capture this light and automatically amplify it, enabling more efficient detection with existing equipment,鈥 says Asadchy. 

Creating photonic time crystals for visible light has long been challenging due to the need for extremely rapid yet simultaneously large-amplitude variation of material properties. To date, the most advanced experimental demonstration of photonic time crystals 鈥 developed by members of the same research team 鈥 has been limited to much lower frequencies, such as microwaves. In their latest work, the team proposes, through theoretical models and electromagnetic simulations, the first practical approach to achieving 鈥渢ruly optical鈥 photonic time crystals. By using an array of tiny silicon spheres, they predict that the special conditions needed to amplify light that were previously out of reach can finally be achieved in the lab using known optical techniques.

The team consisted of researchers from Aalto University, University of Eastern Finland, Karlsruhe Institute of Technology, and Harbin Engineering University. The research was recently published in . 

More information

Read more

 Time varying interface and light

A new type of photonic time crystal gives light a boost

The researchers created photonic time crystals that operate at microwave frequencies, and they showed that the crystals can amplify electromagnetic waves.

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen
A person wearing a light grey hoodie stands indoors with a brick wall and green plants in the background.
Appointments, University Published:

The research puzzle of when humans and AI don鈥檛 see eye to eye

Francesco Croce works on robustness in multi-modal foundation models