ʵ

News

More Higgs particles can be found by studying superfluid helium

Recent study predicts that these particles are much heavier than earlier observation.
Helium-3 experimental cell and extract of data showing creation of light Higgs mode (analog of 125 GeV Higgs boson). Illustration: Dr. Vladislav Zavyalov, Low Temperature Laboratory, Aalto University.

In 2012, a proposed observation of the Higgs boson was reported at the Large Hadron Collider in CERN.  The observation has puzzled the physics community, as the mass of the observed particle, 125 GeV, looks lighter than the expected energy scale, about 1 TeV.

Researchers at Aalto University in Finland now propose that there is more than one Higgs boson, and they are much heavier than the 2012 observation.  The results were recently published in Nature Communications.

'Our recent ultra-low temperature experiments on superfluid helium (3He) suggest an explanation why the Higgs boson observed at CERN appears to be too light.  By using the superfluid helium analogy, we have predicted that there should be other Higgs bosons, which are much heavier (about 1 TeV) than previously observed', says Professor (emeritus) Grigory E. Volovik.

Prof. Volovik holds a position in the Low Temperature Laboratory at Aalto University and in Landau Institute, Moscow.  He has received the international Simon Prize in 2004 for distinguished work in theoretical low temperature physics, and the Lars Onsager Prize in 2014 for outstanding research in theoretical statistical physics.

ROTA cryostat used in the helium experiments of the Low Temperature Laboratory.

At the same time, the new CERN experiments have shown evidence of the second Higgs in just the suggested region (at 0.75 TeV).  This evidence has immediately been commented and discussed in a large number of papers submitted to arXiv, an e-print service widely utilised by the physics community to distribute manuscripts of their unpublished work.

The article "Light Higgs channel of the resonant decay of magnon condensate in superfluid 3He-B” was published in the journal Nature Communications 8 January 2016.  The research was conducted by S. Autti, V.B. Eltsov, P. Heikkinen, G.E. Volovik and V.V. Zavjalov.

Link to the paper

Contact information:

Professor (Emeritus) Grigory E. Volovik
+358 50 344 2858
grigori.volovik@aalto.fi

(physics.aalto.fi)

(physics.aalto.fi)

(ltq.aalto.fi)

  • Updated:
  • Published:
Share
URL copied!

Read more news

Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.
A person in black touches a large stone sculpture outside a brick building under a blue sky.
Campus, Research & Art, University Published:

Glitch artwork challenges to see art in a different light

Laura Könönen's sculpture was unveiled on 14 October at the Otaniemi campus.
Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Mikučioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled “Nanoparticles Integrated Functional Textiles”.
A modern building with a colourful tiled facade with solar panels. The sky is clear and light blue.
Press releases, Research & Art Published:

Carbon-based radicals at the frontier of solar cell technology

Could a single unpaired electron change the future of solar energy?