柠檬导航

News

New machine learning method offers better predictions of future disease risk

Predictions for developing common diseases were more accurate than before.
A running, abstract human figure in front of a background that turns into pixels.
Image: Aalto University / Matti Ahlgren

Researchers at Aalto University have developed a new machine learning method that improves the estimation of risk of developing complex diseases such as heart disease, diabetes, and liver conditions. The new tool, called survivalFM, looks not just at individual risk factors, such as cholesterol levels or age, but also at how these factors interact with each other to affect long-term health outcomes. 

鈥楾oday鈥檚 health data is incredibly complex 鈥 and so is human health. Factors like age, lifestyle, and genetics rarely act alone; they also influence each other in subtle ways. We wanted to create a method that could capture some of these complex interdependencies and still be clear enough for researchers and clinicians to understand and use,鈥 says Heli Julkunen, the study鈥檚 lead author and a machine learning researcher at Aalto University. 

What makes this approach novel is how it handles the interactions between risk factors. Examining every possible pair of interacting risk factors one by one would be computationally expensive. The new method uses a mathematical technique to efficiently capture the underlying patterns of interaction, even in very large datasets.

The results, , suggest that this approach could lead to more accurate and personalized predictions of who is likely to develop certain diseases in the future.

鈥楩or instance, software that uses our method could help clinicians gain a better understanding of how combinations of risk factors, such as high cholesterol and smoking together, affect disease risk. This, however, is only a simplified example, since the true novelty of the method lies in its ability to examine the simultaneous effects of many such risk factors,鈥 Julkunen says. 

Why this matters

Healthcare professionals use risk prediction models to estimate a person鈥檚 likelihood of developing a disease over time. These tools help guide decisions about prevention, screening, and treatment. For example, models like QRISK3 in the UK or FINRISKI in Finland are commonly used to estimate the future risk of cardiovascular disease in the next 10 years.

Traditional prediction models usually treat each risk factor on its own. But in reality, many factors affect each other. For instance, cholesterol levels can predict cardiovascular risk differently depending on age, genetics or lifestyle habits. By considering these interdependencies, the new machine learning method provides a more detailed picture of a person鈥檚 risk. 

Tested with real-world health data

The researchers tested the new method using data from the UK Biobank, a large health research database that includes medical records, lab tests, lifestyle information, and genetic data from around 500,000 people. 

The model was trained to predict the risk of developing ten common diseases over a ten-year period. Across most conditions, it outperformed standard prediction tools that treat risk factors independently. The new method was especially effective at improving individual risk estimates, in other words assigning higher predicted risks to those who actually went on to develop disease, and lower risks to those who remained healthy.

Designed to be interpretable

Unlike many machine learning and AI models that are difficult to interpret, this new method was designed to be transparent. That means researchers and users can understand how the model arrives at its predictions and see which combinations of risk factors influence the prediction.

鈥榃e see an increasing interest for interpretability in machine learning and AI applications, particularly in sensitive areas like healthcare. This method allows us to look at the model and directly see why this person was flagged as high risk,鈥 says professor Juho Rousu from Aalto University. 

The method is broadly applicable to any outcome where timing matters. This includes not only medical research but also fields like engineering reliability studies and financial risk modelling.

The research was funded by the Research Council of Finland and the Technology Industries of Finland Centennial Foundation via the Aalto University House of AI centre.

Geometric composition of intersecting lines in blue, orange, and grey on a black background.

House of AI

The centre brings together top researchers and companies to develop new applications and possibilities for artificial intelligence

FCAI

The Finnish Center for Artificial Intelligence FCAI is a research hub initiated by Aalto University, the University of Helsinki, and the Technical Research Centre of Finland VTT. The goal of FCAI is to develop new types of artificial intelligence that can work with humans in complex environments, and help modernize Finnish industry. FCAI is one of the national flagships of the Academy of Finland.

  • Updated:
  • Published:
Share
URL copied!

Read more news

Book cover of 'Nanoparticles Integrated Functional Textiles' edited by Md. Reazuddin Repon, Daiva Miku膷ioniene, and Aminoddin Haji.
Research & Art Published:

Nanoparticles in Functional Textiles

Dr. Md. Reazuddin Repon, Postdoctoral Researcher at the Textile Chemistry Group, Department of Bioproducts and Biosystems, Aalto University, has contributed as an editor to a newly published academic volume titled 鈥淣anoparticles Integrated Functional Textiles鈥.
Person standing outdoors in autumn, wearing a grey hoodie and green jacket. Trees in the background with orange leaves.
Appointments Published:

Introducing Qi Chen: Trustworthy AI requires algorithms that can handle unexpected situations

AI developers must focus on safer and fairer AI methods, as the trust and equality of societies are at stake, says new ELLIS Institute Finland principal investigator Qi Chen
A person wearing a light grey hoodie stands indoors with a brick wall and green plants in the background.
Appointments, University Published:

The research puzzle of when humans and AI don鈥檛 see eye to eye

Francesco Croce works on robustness in multi-modal foundation models
Eric Malmi in Otaniemi, in front of Laura K枚n枚nen's Glitch artwork. Photo: Matti Ahlgren.
Appointments Published:

A rap algorithm led him to research language models at Google DeepMind 鈥 now Eric Malmi returns 柠檬导航 as an adjunct professor

Eric Malmi received his PhD from Aalto University in 2018 with a dissertation that developed AI methods for linking historical records and family trees. At Google DeepMind he has developed Gemini language models and a chess AI. He returned to his alma mater because of ELLIS Institute Finland.