ÄûÃʵ¼º½

News

One million euros to research of radiation detection

Academy of Finland funds projects to develop highly sensitive imaging and measurement techniques.
Tutkija Ville Jokinen Micronovassa materiaalinäyte kädessään, kuva Aino Huovio

Aalto University's projects to be funded include research into technology for imaging the corneal tissue in the eye, ultrasensitive magnetic field detectors, and infrared sensors based on germanium. These three projects received more than half of the available funding from the Academy of Finland’s call for applications.

Professor Zachary Taylor and his research group are developing a novel diagnostic imaging system for early and accurate detection of corneal graft rejection. Using submillimeter wave and THz spectroscopy integrated with near infrared optical coherence tomography, new imaging technology could detect the excess corneal tissue water content, which precedes graft rejection. 

‘Current diagnostic methods are late to detect rejection which often lead to graft failure. This technology will save the high value resource of donor cornea and preserve the graft patient visual acuity and quality of life,’ professor Taylor said. 

Senior University Lecturer Gheorghe-Sorin Paraoanu and his research group are aiming at producing ultrasensitive magnetic fields detectors using a single artificial atom. 

'This could have applications for brain scanning, geology, earthquake prediction, oil exploration and more. Our work on producing and controlling the artificial atom will also affect more fundamental branches of physics like axion detection. These are all applications where one needs to detect small magnetic fields.'

Professor Hele Savin’s joint project with University of New South Wales aims to develop new highly sensitive infrared sensors, which could be applied e.g. in medical diagnostics. The project combines Aalto's expertise in black silicon and laser processing developed at University of New South Wales. 

The funded projects are part of (RADDESS), an Academy Programme that provides funding to projects that study novel device-driven and functional radiation detection systems in areas of both health and safety.

Photo: Aalto University, Aino Huovio

  • Updated:
  • Published:
Share
URL copied!

Read more news

A collage of nine people in formal and casual attire. Backgrounds vary from office settings to plain walls.
Research & Art Published:

Research Council of Finland establishes a Center of Excellence in Quantum Materials

The Centre, called QMAT, creates new materials to power the quantum technology of coming decades.
arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.