ÄûÃʵ¼º½

News

Oops: A curious discovery

During doctoral researcher Fereshteh Sohrabi’s master’s project, curiosity turned a failing experiment into a new research avenue.
Hymyilevä Fereshteh Sohrabi pitelee toisessa kädessään muistikirjaa ja toisessa kädessä tussia, jolla hän on piirtävinään ilmaan.
Fereshteh Sohrabi was photographed by Nita Vera.

‘I was doing my master’s thesis when I learned about a summer project that seemed interesting. I wanted to expand my knowledge, so I applied for it.

The idea was to add charge-carrying agents to a ferrofluid – making what we called an electroferrofluid – and then study its behaviour in electric and magnetic fields. We were looking for certain behaviours, like self-assemblies of nanoparticles.

The experiments didn’t seem to be working, and it looked like we had failed. We couldn’t see what we were looking for. Instead, we saw some instabilities in the system that made it difficult to reach our goal. 

Some others on the team had worked on other electric-field phenomena for another project, which gave us the idea of trying the electrode setup from those experiments. We thought that might simplify the system and generate simpler and more well-defined nanoparticle structures. We already had everything in the lab, so we tried it out of curiosity.

Something interesting happened. We started seeing various instabilities and dynamic pattern formations at a different scale than we were expecting. The first time I saw them, I was really fascinated and had some happy tears in front of the microscope. 

It was a new phenomenon – that we had discovered! We decided to study the instabilities and patterns instead of trying to remove them. I looked forward to going to lab and exploring the system every day; I did so many experiments over the following weeks to test out different parameters and try to understand the patterns and how they formed. 

We hadn’t expected that adding nanoparticles would lead to new complex behaviour or a whole new pattern formation system in ferrofluids. We’d been trying to do something else, but now this has opened up a whole new area of research. I decided to change my master’s thesis topic and study this system instead, and it has fascinated me ever since. 

I think it’s important to always think outside the box and just explore. It’s good that research has certain structures, but when doing experiments, I’m always wondering about other things we could do. I often have a curious and playful approach.

I learned to not get disappointed when an experiment seems to fail and instead change my perspective and ask different questions. This journey has been the most exciting time of my career, and I enjoyed it so much that I’d like to pursue research in the future. Curiosity can go a long way.’

Text: Sedeer el-Showk 
Photo: Nita Vera

This article has been published in the , April 2023.

  • Updated:
  • Published:
Share
URL copied!

Read more news

Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
Deepika Yadav in the Computer science building in Otaniemi. Photo: Matti Ahlgren.
Appointments Published:

Deepika Yadav leverages technology to improve women's health

Deepika Yadav recently began as an assistant professor at the Department of Computer Science in the field of human-computer interaction (HCI) and interaction design for health and wellbeing.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.
Microscopic view of several rod-shaped bacteria with hair-like structures, set against a dark red background.
Press releases, Research & Art Published:

A new way to measure contagion: the gut bacterium behind blood poisoning can spread like influenza

Neither the antibiotic-resistant nor the highly virulent strains are the most transmissible.