ʵ

News

How does hydrogen actually work as a fuel? Research project receives 1.7 million euros to study hydrogen combustion

The goal of the project financed by Business Finland is to speed up the development of emission-free marine technology, among other things.
Pyörteilevä, turbulentti vetyiekki (simulointikuva). Ilya Morev ja Ville Vuorinen, Aalto-yliopisto
Preliminary simulations of hydrogen flames. The picture shows a swirling, turbulent flame. Photo: Ilya Morev & Ville Vuorinen, Aalto University.

The combustion of hydrogen and its derivative fuels, such as ammonia, produces no carbon dioxide emissions and thus it plays a central role in Finnish and European efforts to become less dependent on fossil fuels. The EU has set a goal to have clean, low-carbon hydrogen and derivative fuels account for almost a fifth of end-use energy by 2050.

Business Finland has granted 1.7 million euros in funding to the HENNES research project, which studies the physics and chemistry of hydrogen combustion. Among the universities involved in the project are Aalto University and the University of Turku. The research is part of äٲä's Zero Emission Marine ecosystem project, which aims to contribute to the development of zero-emission marine technology, among other things.

’Hydrogen-fuelled combustion engines have been the object of many studies, but they have not been adopted in the production of electricity or transportation, as little basic knowledge exists on how hydrogen combusts inside an engine. We need deeper insights and understanding of its thermodynamics, flow mechanics, nitrogen oxides emissions and combustion,’ says Ville Vuorinen, Professor of fluid physics and energy technology of the Aalto University Department of Mechanical Engineering. Professor Simo Hostikka, who specialises in fire safety engineering, will also participate in the project from Aalto University.

Combining 3D simulation methods with experimental research is at the core of the research. It is a research project investigating the basic properties of hydrogen, the results of which can be used by both the scientific community and industry.

Close cooperation of research and product development in a key role

Hydrogen differs from traditional fuels in terms of its thermodynamic and chemical properties and behaves differently in combustion processes. The ignition sensitivity of hydrogen and the small size of the molecule also pose challenges for both combustion control and hydrogen storage.

Accurate modeling of hydrogen combustion is a very challenging problem in computational physics and chemistry, the understanding of which is important when designing efficient combustion processes. Information is needed, for example, to store liquid hydrogen and to develop and design heat exchangers and vaporizers used in energy transfers.

Professor Vuorinen’s research team will focus especially on burner flames and combustion phenomena inside combustion engines, while Professor Hostikka’s team will study the fire safety of hydrogen.

Armin Wehrfritz, Assistant Professor of mechanical engineering at the University of Turku, and his research group investigate the thermodynamic and phase-change properties of hydrogen and hydrogen-derived fuels, in particular with respect to applications of fuel storage and supply systems.

"Reducing climate emissions and developing a fossil-free energy and transport sector requires close cooperation between academic research and corporate product development. Hydrogen fuel has great potential, especially in marine sector, but the development of the hydrogen value chain from production, storage, transport to fuel utilization requires a thorough understanding of hydrogen's properties. The HENNES project enables precisely such holistic research and development of the use of hydrogen," says Wehrfritz.

Such insight is needed for instance to develop and design heat exchanges and vaporizers used to store liquid hydrogen. The work at University of Turku will further include model development for near-wall flames with a focus on the interaction of turbulence and chemistry.

In the project, researchers use open-source simulation tools to find out how hydrogen behaves, for example, in engines and burners important to industry and in heat exchangers used in energy transfer. Simulations can also be used to study hydrogen fire safety. With the help of new information, it is possible to design even more efficient and durable internal combustion engines that run on hydrogen, which in turn promotes the use of carbon-free energy worldwide.

Through research, äٲä gets valuable information about technology solutions aimed at green fuels.

“äٲä is committed to the development of engines using carbon free fuels, both for marine applications and stationary power plants supporting electrical grids, and the modelling of hydrogen combustion is essential for the engine performance optimization”, Jari Hyvönen from äٲä Marine Power’s R&D emphasises. 

Aalto University's share of the funding granted by Business Finland is EUR 1.1 million euros, and the University of Turku's share is EUR 0.6 million euros. In addition to äٲä as the lead company in the ZEM ecosystem, the industry partners in the project are AGCO Power, Oilon, Finno Exergy, Vahterus, Auramarine, KK-Palokonsultti Oy and P2X Solutions.

For more information:

Aalto University
Professor Ville Vuorinen
tel. +358 50 361 1471
ville.vuorinen@aalto.fi

Professor Simo Hostikka
tel. +358 50 447 1582
simo.hostikka@aalto.fi

University of Turku
Assistant Professor Armin Wehrfritz
tel. +358 50 569 6710
armin.wehrfritz@utu.fi

äٲä
Jari Hyvönen, General Manager
tel. +358 40 0930978
jari.hyvonen@wartsila.com

  • Updated:
  • Published:
Share
URL copied!

Read more news

A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.
Microscopic view of several rod-shaped bacteria with hair-like structures, set against a dark red background.
Press releases, Research & Art Published:

A new way to measure contagion: the gut bacterium behind blood poisoning can spread like influenza

Neither the antibiotic-resistant nor the highly virulent strains are the most transmissible.
Ratkaisuryhmä kokoontui Aalto-yliopistolla lokakuussa 2025.
Press releases Published:

Cross-sectoral working group: Competitiveness, security and green transition must be promoted as a whole

A cross-sectoral working group for universities, businesses and cities is proposing that Finland speed up its international competitiveness, national security and green transition as one entity. The group suggests that, for example, defence procurement could support solutions aimed at a carbon-neutral society.
Four men in formal attire, each in different settings. One wears a turtleneck, others wear suits with ties.
Research & Art Published:

Future makers research batteries, cryptography and plastic recycling

The Technology Industries of Finland Centennial Foundation awarded 3.5 million euros in research funding to eight projects, five from Aalto University.